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Control Communication Complexity of Distributed
Actions

Wing Shing Wong and John Baillieul

Abstract—Recent papers have treated control communication
complexity in the context of information-based, multiple agent
control systems including nonlinear systems of the type that have
been studied in connection with quantum information processing.
The present paper continues this line of investigation into a class
of two-agent distributed control systems in which the agents
cooperate in order to realize common goals that are determined
via independent actions undertaken individually by the agents.
A basic assumption is that the actions taken are unknown in
advance to the other agent. These goals can be conveniently
summarized in the form of a target matrix, whose entries are
computed by the control system responding to the choices of
inputs made by the two agents. We show how to realize such
target matrices for a broad class of systems that possess an
input-output mapping that is bilinear. One can classify control-
communication strategies, known as control protocols, according
to the amount of information sharing occurring between the
two agents. Protocols that assume no information sharing on the
inputs that each agent selects and protocols that allow sufficient
information sharing for identifying the common goals are the
two extreme cases. Control protocols will also be evaluated
and compared in terms of cost functionals given by integrated
quadratic functions of the control inputs. The minimal control
cost of the two classes of control protocols are analyzed and
compared. The difference in the control costs between the two
classes reflects an inherent trade-off between communication
complexity and control cost.

Index Terms—Information-based control system, Control com-
munication complexity, Brockett-Heisenberg system

1. INTRODUCTION

In [28] and [29] the authors proposed the concept of
control communication complexity as a formal approach for
studying a group of distributed agents exercising independent
actions to achieve common goals. For distributed cooperative
systems, it is natural to expect that communication can help
improve system performance, such as reducing the control
cost. In this paper, we demonstrate how the concept of control
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communication complexity can lead to an inherent estimate of
the value of communication bits in reducing the control cost.

Information-based control theory aims to deal with systems
in which the interplay between control and communication
are closely intertwined. For some early work see for example
[9], [30], [31], [11], [12], [17], [22], and [27]. In this paper,
we investigate information-based systems controlled by two
distributed agents. In particular, we focus on cooperative
control, the goal of which is for the agents, Alice and Bob,
to induce a system output that depends jointly on the controls
they independently select from their respective finite sets of
control inputs. The problems treated below have extensions to
settings in which the number of agents is larger than two, but
such extensions are beyond the scope of the present paper.

The concept of multiple distributed selections of control
actions from a specified set of possible choices has not
received much attention in the control literature until recent
work by the authors. While we believe this perspective is
novel, there are connections with earlier work on cooperative
decision making such as in the team decision problems treated
in [14] and [1]. It also makes contact with (but differs
from) a substantial body of work that has been devoted to
extending the concepts of centralized control to the treatment
of distributed and multi-agent systems. Space does not permit
a complete survey, but relevant work includes [33] where the
exchange of information is modeled and then used to reduce
a certain non-classical stochastic optimization problem to a
classical one. The recent papers [34] and [21] address prob-
lems of distributed control with feedback loops closed through
networks of communication-constrained data channels.

The aims and fundamental problems encountered in our
work on control communication complexity are substantially
different. In what is reported below, the objective has been
to extend ideas of communication complexity theory such
that the cost of both communication and control is explicitly
modeled and taken into account. The models being proposed
are abstractions of a variety of physical processes arising in
diverse applications such as controlled quantum spin systems
and motion control of robotic vehicles. Our goal is to un-
derstand the general principles underlying communication by
means of the dynamics of such systems.

While the distinction between our work below and previous
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work on decentralized control is real, the differences can be
subtle as in the following example. Suppose that two agents
wish to find touring strategies in order to meet as quickly as
possible, as exemplified by the scenario of a mother and her
child separated in a crowded park. For that problem, a practical
solution, not necessarily optimal, is to ask the child to stay in
one place and for the mother to conduct a complete tour of
the park. For a more complex situation, consider Alice and
Bob who jog in the same park at the same time every day.
By tacit understanding, they wish their paths to cross or not
to cross according to their moods (the choices) as prescribed
in the following table

Alice in good mood Alice in bad mood
Bob in good mood Paths cross Paths do not cross
Bob in bad mood Paths do not cross Paths do not cross

Table 1

If Alice and Bob can call each other to communicate their
choice of inputs, the problem is trivial to solve. However,
if direct communication is not available or allowed, a basic
question is whether it is possible for Alice and Bob to follow
different tour paths based on their moods to accomplish the
stated objective. Moreover, if multiple feasible solutions exist,
we are interested in identifying those that are optimal with
regard to an appropriate metric, such as the total energy
expended by the agents over a period of time encompassing
many jogs in the park.

Although Table 1 bears resemblance to the payoff functions
in classical game theory, one cannot over-emphasize the point
that there is no optimization of the table values in our problem
formulation.

To fix ideas for subsequent discussions, there is assumed to
be a control system with two input channels, one to be used
by each of the two agents. The case of larger number of agents
will be considered elsewhere. Throughout the paper we index
the finite collection of control inputs that Alice can send to the
system by a set of labels A ≡ {1, . . . ,m}. Similarly, a finite
set B ≡ {1, . . . , n} is used to label the controls available to
Bob. It is assumed that over many enactments of the protocol
the inputs used by Alice and Bob will appear to be randomly
chosen samples from uniformly distributed random variables
with sample spacesA and B. If one represents the target output
when Alice chooses α = i and Bob chooses β = j by Hij ,
then the m-by-n matrix

H = [Hij ] (1.1)

provides a compact representation of the set of target outputs
for all possible choices of inputs and will be referred to as the
target matrix.

While the structure of control protocols will be explained
in the following section, a basic observation is that the input
labels of the agents, α ∈ A and β ∈ B, are key inputs
to these protocols. Once α and β are specified, following
the basic premise of [15], the control protocol is assumed to
run to completion. For a control protocol, P , let x(P(i, j), t)

represent the state at time t when α = i and β = j. If the
system output mapping is represented by F , the feasibility
problem of protocol-realizing control is to determine whether
it is possible to design a control protocol, P , so that at the
termination time, T , the following condition is satisfied for all
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}:

F (x(P(i, j), T )) = Hij . (1.2)

Solutions to the feasibility problem may involve control
protocols that require observations of the system state; even
though there is no direct communication links between the
agents, it is possible for them to signal to one another via
the dynamic system. An example of such a control protocol
was discussed in [29]. The number of bits exchanged during
the execution of a control protocol is a useful indicator of
its complexity. On the other hand, control protocols can
also be evaluated in terms of the control cost incurred, for
example as measured by the control energy required. Although
communication complexity and control cost seem unrelated,
we will demonstrate that there is a close relation between the
two.

To make our results concrete, we will focus on a class of
systems whose input-output mappings are bilinear. A proto-
typical example of such a system is the Brockett-Heisenberg
system, which we hereafter refer to as the B-H system. The
system is arises in sub-Riemannian geometry ([4]), and it
shares essential features with models arising in nonholonomic
mechanics ([25],[26]) and quantum mechanics ([29]). For B-H
systems one can characterize exactly when protocol-realizing
control problems have feasible solutions in the absence of any
communication between the agents. Moreover, when a prob-
lem is feasible it is possible to determine the minimal control
cost needed to achieve it. On the other hand, in the case that the
agents have partial information about each other’s choice of
inputs, it will sometimes be possible to decompose the control
communication problem into simpler parts on each of which
a smaller control cost can be calculated. Pursuing this idea, it
will be possible to estimate the minimal control costs for two
extreme scenarios, one without side communication or partial
prior knowledge and the other with enough communication
to allow the players to precisely compute intermediate results
regarding the target matrix. The two extreme scenarios suggest
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a natural framework for appraising the inherent value of a
communication bit in terms of control cost.

The organization of the paper is as follows. In section 2,
we provide a description of the basic model as well as the
definition of key concepts. In section 3, background results on
a bilinear input-output system are presented. In section 4 we
describe how to transform the optimization of a single round
protocol into a matrix optimization problem, the solution to
which is presented in section 5. Implications of the result
for understanding the trade-off issue between communication
complexity and control cost is explained in section 6. Multi-
round protocols are discussed in section 7. Section 8 provides
a brief conclusion of the paper.

2. THE BASIC MODEL

The dynamical systems considered here are inherently con-
tinuous time systems of the form:


d

dt
x(t) = d(x(t), u(t), v(t)), x(0) = x0 ∈ RN ,

z(t) = c(x(t)) ∈ R,
(2.1)

where d is an arbitrary smooth vector field and u and v are
scalar control functions that, once chosen, are applied over a
time interval of standard length T . The output z(·) is sampled
at discrete time instants t0 < t1 < . . . , where t0 = 0 and
tk+1 = tk + T . Information about the state is made available
to the two agents through encoded observations bA(x(t))

and bB(x(t)) which are made at the same time instants.
The fact there are standard intervals of time over which
observations and selected control inputs are applied allows the
analysis to make contact with prior work on information-based
control of discrete-time systems. Under our assumptions, we
thus consider the following simplified version of the model
introduced in [28]. For k = 1, 2, . . ., let tk represent the fixed
time when observations are taken. Define

xk = x(tk). (2.2)

Observations of the state, bA(xk) and bB(xk), are made
available to each agent as encoded messages, Q(A)

k and Q(B)
k ,

consisting of finite bit-length codewords; in other words,
the ranges of these quantization functions are finite sets.
Computation and communication delays in reporting obser-
vations to the agents are assumed to be negligible. The agents
select respective control actions, uk = PAk (Q(A)

k , α) and
vk = PBk (Q(B)

k , β), where QAk represents the set of coded
observations {Qk(bA(xk)), . . . , Q1(bA(x1))}; QBk is defined
similarly. Note that the arguments of uk and vk are defined
on finite discrete sets. It is assumed that for each element in

the corresponding argument set, uk identifies a unique element
in a set of admissible Lebesgue measurable control functions
over [tk, tk+1); similar assumption holds for vk.

For reasons of simplicity, we assume that the controls u and
v are scalar functions. The codewords identifying the selected
controls are transmitted to the dynamic system. Computation
and communication delays associated with this step are also
assumed to be negligible. Thus at time tk the dynamic system
can determine the control selected by Alice and Bob.

The state transition (2.1) between times tk and tk+1 is thus
described by the following discrete time control model where
the controls are square integrable scalar functions:

xk+1 = a(xk, uk, vk), x(0) = x0 ∈ RN ,
y
(A)
k = bA(xk) ∈ R`A , y

(B)
k = bB(xk) ∈ R`B ,

uk = PAk (Q(A)
k , α), vk = PBk (Q(B)

k , β),

zk = c(xk) ∈ R.

(2.3)

The quantity zk = c(xk) is a global system output that is
observable to Alice, Bob, and possibly to exogenous observers
as well. The protocol parameters, α and β, are specified at
time t0 and remain unchanged while the protocol runs to
completion. The case where these parameters are allowed to
change over time is an interesting extension which is not
considered here.

Definition 2.1. A control protocol, P , consists of the func-
tions:
{Q(A)

k }∞k=0, {Q
(B)
k }∞k=0, {P

(A)
k }∞k=0, and {P (B)

k }∞k=0.

We define the epoch between time tk and tk+1 as round
k+1. In round k+1, an agent first observes and then selects a
control to be applied to the system. The selected controls uk =

PAk (Q
(A)
k (bA(xk)), α) and vk = PBk (Q

(B)
k (bB(xk)), β) will

typically be time-varying in the epoch between time tk and
tk+1, but they depend only on the encoded value of the
state at time tk. Hence, the agents use essentially open-loop
controls during the round, but the selection of the control at the
beginning of the round can depend on partial state information.

Definition 2.2. Consider a dynamic system, (2.3), with pa-
rameters defined by (a,bA,bB , c,x0). A target matrix H is
said to be realizable at termination time Tf if there exists a
k-round protocol, such that

tk = Tf ,

and for any choice of indices i ∈ A and j ∈ B, the k-round
protocol defined with α = i and β = j terminates with

c(xk) = Hij . (2.4)

The initial state is assumed to be fixed and known to the
agents. For the first round, there is no need for any commu-
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nication to the agents. That is, we assume the quantization
functions Q(A)

0 and Q
(B)
0 always take the same value for all

control choices and need not be transmitted.

Because a target matrix may be realized by different proto-
cols, there is an interest in identifying those that are optimal
with respect to some performance measures. One such measure
is to count the number of communication bits exchanged
during the protocol execution. To make this precise, [28] in-
troduced the concept of control communication complexity by
extending the concept of communication complexity that was
introduced in computer science by Yao [32]. Briefly speaking,
given a dynamic system and a target matrix, one defines the
protocol complexity of a feasible protocol to be the maximum
number of bits exchanged by the agents in running the pro-
tocol to completion. The control communication complexity
is then the minimum protocol complexity over the set of all
feasible protocols. A caveat: unlike classical communication
complexity, control communication complexity is defined with
regard to a fixed dynamical system.

In the models considered in the present paper, control inputs
are square integrable functions, and this suggests measuring
the complexity of a protocol in terms of the integral of a
quadratic function of the control. This makes contact with
performance measures commonly used in centralized control.
Indeed, control communication complexity provides a rich
new class of optimal control problems. Intuition suggests that
protocols in which there is limited communication between
the agents except for their common observations of the system
dynamics may require a larger integral control cost than
those that employ a large number of communication bits in
addition to the system observations. If the agents have partial
information about each others choices of inputs, control laws
can be more precisely tailored. A contribution of this paper
is to take the first step towards analyzing this trade-off by
comparing two limiting types of control protocols, namely,
single round protocols which entail no communication bits,
and protocols in which agents share partial information about
which elements α ∈ A and β ∈ B are governing the execution
of the protocol.

For the rest of the paper we focus on scalar output functions
to simplify the analysis. Vector-valued outputs as necessitated,
say, by a pair of agents collaboratively deploying a sensor
network, will not be discussed here.

To analyze the cost of letting our control system evolve
under different input curves in single round protocols, we lift
the evolution dynamics (2.3) back up to the continuous domain
as described by equation (2.1), but with a scalar c.

Unless stated otherwise, the controls u and v exercised

by the agents are assumed to lie in a closed subspace L ⊂
L2[0, T ]. Let L⊗L represent the tensor product Hilbert space
with inner product defined by

< u1 ⊗ v1, u2 ⊗ v2 >=< u1, u2 >< v1, v2 > . (2.5)

At time T , the input-output mapping of system (2.1) can be
regarded as a functional from L ⊗ L to R, denoted by F . F
of course depends on the initial state x0 but as the state is
assumed to be fixed and since for the time being we consider
only single round protocols, this dependency can be hidden
for simplification. Without loss of generality we assume that
t0 = 0 and t1 = T = 1.
F is a bounded functional if there exists a finite ‖F‖ so

that for all (u, v) ∈ L ⊗ L,

|F (u, v)| ≤ ‖F‖‖(u⊗ v)‖L⊗L = ‖F‖‖u‖L‖v‖L. (2.6)

To realize a given target matrix H, the optimal controls in
general depend jointly on the parameters, α and β. However,
if the agents make their choices independently and there is no
communication between them, u can only depend on Alice’s
parameter α and v on Bob’s parameter β.

A target matrix H is realized by a single round protocol
P if there exist sets of controls, U = {u1, . . . , um} and V =

{v1, . . . , vn}, so that

F (ui, vj) = Hij . (2.7)

We emphasize that F represents the system output at time T .
Such a single round protocol solution may not always exist as
we will see in subsequent sections. The problem may become
feasible if Alice and Bob can exchange information about their
choices to each other.

Given the system (2.1) and the parameter sets A and B,
the cost of a single round control protocol P is defined as an
average of the required control energy, given explicitly by the
formula,

I(U ,V) =
1

m

m∑
i=1

∫ 1

0

u2i (t)dt+
1

n

n∑
j=1

∫ 1

0

v2j (t)dt. (2.8)

One can also write equation (2.8) in the form,

I(U ,V) =
1

mn

m∑
i=1

n∑
j=1

(∫ 1

0

u2i (t)dt+

∫ 1

0

v2j (t)dt

)
, (2.9)

which highlights the fact that the control cost is averaged over
all possible event outcomes based on the control actions that
are chosen by the agents.

In subsequent sections, we compute the minimum averaged
control energy for an arbitrary target function H. That is, our
aim is to compute

ĈF (H) ≡ min
U,V⊂L

I(U ,V) (2.10)
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subject to the constraints that for i = 1, . . . ,m and j =

1, . . . , n,
F (ui, vj) = Hij . (2.11)

Before concluding this section we note that there are some
similarities between the cooperative control communication
protocols studied in this paper and more classical dynamic
game strategies as studied in, say, [3]. Yet there are fun-
damental differences; for example, optimization of payoff
functions is not the focus of our investigation. Using the
rendezvous problem as an example, once the moods of the the
agents are fixed, the outcome to be achieved is automatically
defined by the target matrix. The investigation focus is on
how to ensure that the target objective—paths crossing or not
crossing—can be guaranteed. The work here also has some
connection with the many papers in the literature dealing with
distributed control of mobile agents, multi-agent consensus
problems, and classical team decision theory. See, for instance,
[7],[8],[10],[13],[14], and [23]. In these papers the dynamics
of the subsystems controlled by the agents are usually not
tightly coupled and the control cost is not explicitly calculated,
unlike the models we are considering here. Moreover, allowing
agents to select controls from sets of standard inputs is also a
fundamental point of departure.

3. SYSTEMS WITH BILINEAR INPUT-OUTPUT
MAPPINGS

The simplest system defined in Section 2 is probably of the
following linear type:

dx(t)

dt
= Ax(t) + u(t)b1 + v(t)b2, x0 ∈ RN ,

yA(t) = yB(t) = z(t) = cTx(t) ∈ R.
(3.1)

The input-output mapping of this system is affine in (u, v).
Moreover, it is easy to check that if F (ui, vk) = Hik,
F (ui, vl) = Hil, F (uj , vk) = Hjk, and F (uj , vl) = Hjl for
some ui, uj , vk, and vl, then

Hik −Hjk = Hil −Hjl. (3.2)

Thus, there are severe restrictions on the set of realizable
target functions for such an input-output mapping. A class of
distributed control systems that realizes a richer class of input-
output mappings has two independent input channels entering
the system in a jointly bilinear fashion. More precisely, we
have the following definition:

Definition 3.1. Consider a system defined by equation (2.1)
with control functions defined in L, a closed subset of L2[0, T ].
The system is a bilinear input-output system if for any time t ≥
t0, the output at t, regarded as a mapping (u(·), v(·)) 7→ z(T )

from L ⊗ L to R is bilinear in the control function ordered
pair (u, v).

In state-space representation, two prototypical classes come
to mind. The first class is:


dx(t)

dt
= Ax(t) + u(t)v(t)b, x(0) = 0 ∈ RN ,

yA(t) = yB(t) = z(t) = cTx(t) ∈ R,
(3.3)

for some matrix A and vectors b and c.
A second, in a way more important class, comes from the

Brockett-Heisenberg (B-H) system and their generalization,
[4],[5]. The B-H system, denoted by ΣB , can be described
as follows.

d

dt

 x

y

z

 =

 u

v

vx− uy

 ,

 x(0)

y(0)

z(0)

 =

 0

0

0

 ∈ R3,

yA(t) = yB(t) = z(t) ≡ c((x(t), y(t), z(t)).
(3.4)

The fact that the input-output mappings of these systems
are bilinear in u and v can be easily verified. Note that in
both cases we could take L to be L2[0, T ] which results in
a bilinear input-output function with an infinite dimensional
matrix representation. On the other hand, we could also restrict
L to some finite dimensional subspace of L2[0, T ] if only
certain control functions are allowed to be used in the system.

While our main results make use of properties that are to
some extent particular to (3.4), it is important to note that the
system (3.4) has features of an intrinsically geometric nature
in common with a much larger class of two-input “drift-free”
control systems whose output mappings are not necessarily
bilinear functionals of the inputs. These systems arise in
applications including the kinematic control of nonholonomic
wheeled vehicles (see e.g. [16]) and the control of ensembles
of spin systems arising in coherent spectroscopy and quantum
information processing. (See [18].) As detailed in [29], such
systems are governed by models in which the so-called area
rule prescribes a geometric relationship between inputs and
outputs. For (3.4), this is given explicitly by the following:

Lemma 3.1. (Brockett, [6].) Let u, v ∈ L2[SO(2)] be as
above, and let x, y be defined by (3.4). Then x, y ∈ L2[SO(2)],
and z(·) as defined by (3.4) satisfies

z(1) =

∫ 1

0

v(t)x(t)− u(t)y(t) dt =

∮
x dy − y dx = 2A,

where A is the signed area enclosed by (x(t), y(t)).

We refer to [29] for further information regarding area rules
and associated geometric aspects of induced state motions and
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to [16] for information on the general application of area rules
in two-input control systems. The close relationship between
(3.4) and the two-input drift-free control systems that are
used in designing rf pulses for quantum control experiments
(see e.g. [19]) augurs well for potential applications of the
computability results to be established in the remainder of the
paper.

With such broader applications of B-H systems in mind, we
confine our attention in the remainder of the paper to studying
the response of (3.4) to those closed input curves (u(t), v(t))

that give rise to closed curves (x(t), y(t)). Recall that U =

{u1, . . . , um} and V = {v1, . . . , vn}, represent the sets of the
control actions. We assume the controls are elements in L, a
closed subspace of L2[0, 1] consisting of functions that can
be represented by the following type of Fourier series with
square summable coefficients:

ui(t) =
√

2
∑∞
k=1 [ai,2k−1 sin(2πkt) + ai,2k cos(2πkt)] ,

vj(t) =
√

2
∑∞
k=1 [−bj,2k−1 cos(2πkt) + bj,2k sin(2πkt)] .

(3.5)
This restriction is not essential to the investigation reported in
this paper, but it allows connection to the results presented in
[29] and [2]. Note that L contains continuous periodic func-
tions with zero mean and period one. From basic orthogonality
properties of the sine and cosine functions, one can show:

Lemma 3.2. If the controls ui and vj are used, then at time
t = 1,

z(1) =
∑∞
k=1

ai,2k−1bj,2k−1
πk

+
∑∞
k=1

ai,2kbj,2k
πk

.

(3.6)
Moreover, ∫ 1

0

u2i (t)dt =

∞∑
k=1

(a2i,2k−1 + a2i,2k), (3.7)

∫ 1

0

v2j (t)dt =

∞∑
k=1

(b2j,2k−1 + b2j,2k). (3.8)

The proof is a straightforward calculation and is omitted.
Define matrices UB, VB, and FB as follows:

UB =

 a1,1 a1,2 a1,3 . . .
a2,1 a2,2 a2,3 . . ....

...
...

. . .
am,1 am,2 am,3 . . .

 , (3.9)

VB =

 b1,1 b1,2 b1,3 . . .
b2,1 b2,2 b2,3 . . ....

...
...

. . .
bn,1 bn,2 bn,3 . . .

 , (3.10)

FB ≡
1

π


1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 2−1 0 0 0 . . .
0 0 0 2−1 0 0 . . .
0 0 0 0 3−1 0 . . .
0 0 0 0 0 3−1 . . ....

...
...

...
...

...
. . .

 . (3.11)

Lemma 3.3. The output of the B-H system is given by
UBFBVB

T . Moreover,
m∑
i=1

∫ 1

0

u2i (t)dt = trUBUB
T ,

n∑
i=1

∫ 1

0

v2i (t)dt = trVBVB
T .

(3.12)

The proof is straightforward and is omitted. It should be
noted that the weight assignment and the indexing in (3.5)
are chosen to allow the matrices UB,VB, and FB to assume
these simple representations. The control cost defined in (2.8)
can be rewritten as

I(U ,V) =

(
1

m
trUBUB

T +
1

n
trVBVB

T

)
. (3.13)

These results can be generalized to any system where the
input-output mapping, F , is a bounded functional on L⊗L. Let
{e1, e2, . . .} and {f1, f2, . . .} be orthonormal bases (possibly
the same) for L with respect to the standard inner product on
L2[0, 1]. Let L be the order of L, which could be infinity. If
u =

∑L
i=1 riei and v =

∑L
j=1 sjfj , by the bounded bilinear

F (u, v) = F (

L∑
i=1

riei,

L∑
j=1

sjfj) =

L∑
i,j=1

risjF (ei, fj).

(3.14)
We can represent ui ∈ U and vj ∈ V as L dimensional row
vectors by means of their coefficients with respect to these
orthonormal bases. Let U be the m by L matrix whose i-
th row is the vector representation of ui and V be the n

by L matrix whose j-th row is the vector representation of
vj . Under these bases, F has an L by L dimensional matrix
representation: F ≡ [F (ei, fj)] ; that is, F (ei, fj) = Fij .

Proposition 3.1. The condition that the targets are achievable
can be expressed by the equation:

H = UFVT . (3.15)

The proof is straightforward and is omitted.
As usual, define the rank of F to be the number of its

independent columns (or rows). The rank of F is said to
be infinite if there is no finite subset of columns (rows)
in terms of which all columns (rows) can be expressed as
linear combinations. One can show via arguments presented in
Appendix A that the rank is independent of the bases chosen.
Hence, we can speak of the rank of a bilinear map without
ambiguity.

Proposition 3.2. There exists a single round protocol that
realizes an m-by-n target matrix, H, of rank k, if and only if
the rank of the bilinear input-output mapping F is at least k.

Proof : Let Hk be a full rank k-by-k sub-matrix of H. If
there is a single round protocol to realize H, we can select
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controls from the solution protocol to obtain a realization for
Hk. Conversely, if a single round protocol exists for Hk, we
can extend it to obtain a protocol for realizing H by adding
control functions to the control sets according to the additional
choices allowed; these added controls can be constructed as
linear combinations of the original controls used in realizing
Hk. Hence, we can assume without loss of generality that
m = n = k and H is a k-by-k full rank matrix.

Suppose a single round protocol exists for such a target
matrix. The solutions consist of k controls for Alice and k

for Bob. We can construct an orthonormal basis for L so that
the controls used by Alice are spanned by the first k basis
elements. Construct similarly a basis for Bob. Represent F in
terms of these bases and let F̂ denote the restriction of F to
the first k basis elements. Then, F̂ is a k-by-k matrix and the
equation

H = UF̂VT (3.16)

has a solution. It follows that the rank of F̂, and hence, F is
at least k.

Conversely, if there exists a k-by-k matrix F̂ of full rank
representing the restriction of F to some control subspaces,
equation (3.16) always has a solution for any k-by-k matrix,
H. �

The previous proposition implies that the existence of a
target realizing single round protocol depends on the rank of
the bilinear input-output mapping and the rank of the target
matrix. For a bilinear input-output mapping of finite rank,
there exists target matrices that cannot be realized without
communication between the agents. For a bilinear input-output
mapping of infinite order, any finite dimensional target matrix
can be realized by a single round protocol.

Given a matrix representation, F, for j = 1, 2, . . ., define
its j-dimensional leading principal minors by:

Fj =

[
F1,1 . . . F1,j...

. . .
...

Fj,1 . . . Fj,j

]
. (3.17)

Definition 3.2. A matrix representation of a bilinear map
is regular if for all positive integers j less than or equal
to its rank, its j-dimensional leading principal minors are
nonsingular.

Definition 3.3. A matrix representation of a bilinear map is
strongly regular if it is finite dimensional and regular or if it
is in diagonal form such that for all positive integers j the
diagonal elements satisfy the ordering

Fj,j ≥ Fj+1,j+1 > 0. (3.18)

It is easy to find examples of finite dimensional regular or
strongly regular matrix representations. For the B-H system,
the input-output mapping that takes (u, v) to z(1) by means
of (3.4) has a matrix representation FB described by (3.11)
with respect to the orthonormal basis,

B0 = {
√

2 sin(2πt),
√

2 cos(2πt),
√

2 sin(4πt),
√

2 cos(4πt), . . .}. (3.19)

The matrix is diagonal of infinite rank and provides an infinite
dimensional strongly regular representation of F .

To prepare for subsequent discussions we recall some basic
ideas on singular values. A p-by-q matrix, M, has p singular
values while MT has q singular values. It is well-known that
the nonzero singular values of the two matrices are identical
(see [20] for details). We denote by σi(M) the i-th singular
value of M under the ordering

σ1(M) ≥ σ2(M) . . . ≥ σp(M). (3.20)

If M is a p-by-p symmetric matrix, represent by λi(M) the
i-th eigenvalue under the ordering

λ1(M) ≥ λ2(M) . . . ≥ λp(M). (3.21)

Lemma 3.4. Consider a k-by-k matrix, M, with a matrix
decomposition so that

M =

[
M1,1 M1,2

M2,1 M2,2

]
, (3.22)

where M1,1 is l-by-l, M1,2 is l-by-(k−l), M2,1 is (k−l)-by-l,
and M2,2 is (k − l)-by-(k − l). Then, for i = 1, . . . , l

σi(M) ≥ σi(M1,1). (3.23)

Proof : Consider the following positive semi-definite matrix:

MMT

=

[
M1,1M

T
1,1 + M1,2M

T
1,2 M1,1M

T
2,1 + M1,2M

T
2,2

M2,1M
T
1,1 + M2,2M

T
1,2 M2,1M

T
2,1 + M2,2M

T
2,2

]
.

(3.24)

It follows from Fischer’s Minimax Theorem (page 510, A.1.c
[20]) that for i = 1, . . . , l

λi(MMT ) ≥ λi(M1,1M
T
1,1 + M1,2M

T
1,2). (3.25)

By means of a result of Loewner (page 510, A.1.b [20]):

λi(M1,1M
T
1,1 + M1,2M

T
1,2) ≥ λi(M1,1M

T
1,1). (3.26)

The result then follows by combining these two inequalities.
�

We conclude this section by noting that if a matrix repre-
sentation, F, is finite dimensional, then its singular values are
well-defined and we use σi(F) to represent the i-th largest
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singular value. One can extend this concept to the infinite
dimensional case in the following way. For any matrix F

and corresponding sequence of principal minors (F1,F2, . . . )

(3.17), it follows from the preceding discussion that

σi(Fl) ≤ σi(Fl+1). (3.27)

On the other hand, it is shown in Appendix B that σi(Fl) ≤
‖F‖ for all i. Hence the limit liml→∞ σi(Fl) exists and is
finite. Denote this limit by σi(F). If F is a strongly regular
infinite dimensional representation then clearly for all integers
i and l, σi(F) = σi(Fl).

4. MATRIX REPRESENTATION OF THE
OPTIMIZATION PROBLEM

The control cost of U and V defined in (2.8) can be rewritten
in matrix form as

1

m
trUUT +

1

n
trVVT . (4.1)

Our goal of finding the optimal control to realize a given
target matrix can now be represented as a matrix optimization
problem. One is also interested in approximate solutions
restricted to finite dimensional control subspaces. In particular,
for any positive integer l, satisfying l ≥ max(m,n), consider
the following optimization problem involving the l-by-l lead-
ing principal minor of F, Fl:
Optimization Problem (H,Fl): Let U and V be m-by-l
and n-by-l matrices respectively. The optimization problem
is defined by:

min
U,V

(
1

m
trUUT +

1

n
trVVT

)
(4.2)

subject to the constraint:

H = UFlV
T . (4.3)

While it is not clear whether optimal sequences of controls
for the above problem always exist, the infimum cost, denoted
by ĈF (H), is always well-defined if the target matrix is
realizable.

One can formulate a slightly more general version of this
optimization problem by allowing the weights in the cost
function to be arbitrary positive integers:
Generalized Optimization Problem (H,Fl; p, q): Let H be
an m-by-n target matrix, Fl be an l-by-l leading principal
minor of F, with l ≥ max(m,n), p and q be arbitrary positive
integers. The optimization problem is defined by:

min
U,V

(
1

p
trUUT +

1

q
trVVT

)
(4.4)

subject to the condition

H = UFlV
T . (4.5)

There is an important connection between these two classes
of problems. Given an m-by-n target matrix, H, one can obtain
another target matrix by appending rows of zeros and columns
of zeros to obtain an l-by-l matrix, with l ≥ n, l ≥ m, so that

H̃ =

[
H 0m,l−n

0l−m,n 0l−m,l−n

]
, (4.6)

where 0i,j is an i-by-j matrix with all zeros.
Now consider the Generalized Optimization Problem

(H̃,Fl;m,n). Any optimal solution to the Generalized Op-
timization Problem must satisfy the property:

ui = 0, vj = 0 (4.7)

for i > m and j > n. Otherwise, a lower cost solution can be
obtained by substituting with these zero controls. From this,
one can conclude that the solution is also optimal for the lower
dimensional Optimization Problem, (H,Fl). Conversely, an
optimal solution to the latter problem can be extended to
an optimal solution to the Generalized Optimization Problem
(H̃,Fl;m,n). Hence, by using the Generalized Optimization
Problem formulation, we can assume without loss of generality
that the target matrices are square matrices with the same
dimensions as Fl.

5. SINGLE ROUND PROTOCOLS: MINIMUM
ENERGY CONTROL

One of the key results in this paper is summarized by the
following theorem.

Theorem 5.1. Consider a bounded bilinear input-output map-
ping, F , with a regular matrix representation F with rank s.
Let H be an m-by-n target matrix, such that s ≥ max(m,n).
The infimum control cost of any single round protocol that
realizes H is given by:

ĈF (H) =
2√
mn

min(m,n)∑
k=1

σk(H)/σk(F). (5.1)

If the matrix representation is strongly regular, there exists a
single round protocol that achieves this infimum control cost.

Before proving Theorem 5.1, we present a corollary that
specializes the result to the B-H system (3.4). First note that
the diagonal entries of FB in (3.11) can be represented as
(dk/2eπ)−1, and this leads to the following result.

Corollary 5.1. Consider the input-output system (3.4) and
an m-by-n target matrix H. For single round protocols that
realize H the infimum control cost is given by

ĈFB
(H) =

2π√
mn

min(m,n)∑
k=1

dk/2eσk(H), (5.2)
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and this is achieved by Alice choosing m controls and Bob
choosing n controls from the space spanned by the basis B0
defined in (3.19).

To prove the main theorem, we first establish a proposition
in which we prove the result for a square target matrix H and
for controls restricted to finite dimensional subspaces.

Proposition 5.1. Consider an invertible matrix Fl and an
l-by-l target matrix H with rank r. The minimum control
cost for the Generalized Optimization Problem (H,Fl; p, q)

is achievable and is given by the formula,

ĈFl
(H) =

2
√
pq

r∑
k=1

σk(H)/σk(Fl). (5.3)

Proof : To prove the proposition, first of all we show that
the right-hand-side of (5.3) can be achieved. Let Π be the
orthogonal matrix that puts FlF

T
l into the following diagonal

form:

ΠTFlF
T
l Π =


σ2
1(Fl) . . . 0

...
. . .

...
0 . . . σ2

l (Fl)

 . (5.4)

Define Ũ = ΠTUΠ and Ṽ = ΠTVΠ. Then (U,V) is a
solution to

H = UFlV
T (5.5)

if and only if (Ũ, Ṽ) is a solution to the equation

ΠTHΠ = ŨΠTFlΠṼT . (5.6)

Since the cost of (U,V) and (Ũ, Ṽ) are identical, we can
assume without loss of generality that FlF

T
l is in the diagonal

form (5.4). Let Θ be the orthogonal matrix that diagonalizes
HTH so that

ΘHTHΘT =


σ2
1(H) . . . 0

. . .
... σ2

r(H)
...

0
. . .

0 . . . 0

 ,
(5.7)

and let

Rδ =

(
q

p

)1/4

·



√
σ1(H)σ1(Fl) . . . 0

. . .
...

√
σr(H)σr(Fl)

...
δ

. . .
0 . . . δ


(5.8)

for a small δ > 0. In equation (5.7) the lower right-hand-side
zero-diagonal block is absent if r = l. Similarly for equation
(5.8), the lower right-hand-side δ-diagonal block is absent if
r = l. Define

Uδ = HΘRδ
−1, VT

δ = F−1l RδΘ
T , (5.9)

we obtain a solution to (5.5). By direct computation, it follows
that

1

p
trUδU

T
δ =

1

p
trHΘR−2δ ΘTHT (5.10)

=
1

p
trR−2δ ΘTHTHΘ (5.11)

=
1
√
pq

r∑
k=1

σk(H)/σk(Fl). (5.12)

Since entries of Uδ are affine functions of 1/δ, equation (5.12)
implies Uδ is independent of δ. We express this by writing
Uδ ≡ U0. It is clear that limδ→0 Vδ exists. Denote it by V0.
Then,

1

q
trVδV

T
δ =

1

q
trΘRδ(FlF

T
l )−1RδΘ

T (5.13)

=
1

q
trRδ(FlF

T
l )−1Rδ (5.14)

=
1

q
trR2

δ(FlF
T
l )−1 (5.15)

=
1
√
pq

r∑
k=1

σk(H)

σk(Fl)
+

δ2
√
pq

l∑
k=r+1

1

σ2
k(Fl)

.

(5.16)

Taking the limit as δ → 0,

1

p
trU0U

T
0 +

1

q
trV0V

T
0 =

2
√
pq

r∑
k=1

σk(H)/σk(Fl), (5.17)

proving that the right-hand-side of (5.3) can be achieved.
To complete the proof, we want to show the right-hand-

side of (5.3) is a lower bound for all single round protocols
realizing H. We show this first for invertible H. In this case,
all solutions (U,V) to the equation (5.5) consist of invertible
matrices and for every invertible V there is a unique matrix U

that solves (5.5). By applying polar decomposition to FlV
T

we obtain
VT = F−1l RΘT , (5.18)

for an orthogonal matrix, Θ, and a non-singular symmetric
matrix, R. These two matrices can be regarded as free
variables and we can parametrize the solution space to (5.3)
by R and Θ. Specifically, if we let U = HΘR−1, then the
control cost is

1

p
trUUT +

1

q
trVVT

=
1

p
trR−2ΘTHTHΘ +

1

q
trR2(FlF

T
l )−1. (5.19)
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For any two l-by-l positive semidefinite symmetric matrices,
P and Q

trPQ =

l∑
k=1

λk(PQ) ≥
l∑

k=1

λk(P)λl−k+1(Q). (5.20)

(See, for instance, p.249 of [20].) Therefore,

trR2(FlF
T
l )−1 ≥

l∑
k=1

λ2k(R)σ2
l−k+1(F−1l ) (5.21)

=

l∑
k=1

λ2k(R)/σ2
k(Fl). (5.22)

Similarly,

trR−2ΘTHTHΘ ≥
∑l
k=1 σ

2
k(H)/λ2k(R). (5.23)

Hence,

I(U ,V) ≥ 1

p

l∑
k=1

σ2
k(H)/λ2k(R) +

1

q

l∑
k=1

λ2k(R)/σ2
k(Fl).

(5.24)
One can minimize the right-hand-side of (5.24) by considering

min

l∑
k=1

[
1

p

σ2
k(H)

tk
+

1

q

tk
σ2
k(Fl)

]
, (5.25)

subject to the constraint

t1 ≥ t2 . . . ≥ tl > 0. (5.26)

Via calculus, the unconstrained optimal solution to (5.24) is
shown to be

tk = σk(H)σk(Fl)

√
q

p
, (5.27)

which also satisfies the condition in (5.26). It follows that

ĈFl
(H) ≥ 2

√
pq

l∑
k=1

σk(H)/σk(Fl). (5.28)

By (5.17) the right-hand-side of (5.28) can be achieved, hence
the inequality is an equality and the proposition holds for
invertible H, that is r = l.

We want to show the inequality (5.28) also holds when H

is not full rank. Suppose Û and V̂ give an optimal solution
to (H,Fl; p, q). Define

U(ε) = Û + εI, V(ε) = V̂ + εI, (5.29)

where I is the l-by-l identity matrix. Other than at most a finite
set of values, all these matrices are invertible. Without loss of
generality, assume that for some a > 0 and all 0 < ε ≤ a,
the matrices U(ε) and V(ε) are invertible and restrict ε in
subsequent discussion to such an interval. Let U(ε) denote
the set of controls corresponding to U(ε) and similarly, V(ε)

denote the sets of controls corresponding to V(ε). Define

G(ε) = U(ε)FlV(ε)T = H+ε(ÛFl+FlV̂
T )+ε2Fl. (5.30)

For 0 < ε ≤ a, the matrices G(ε) are invertible. Hence,

I(U ,V) =
1

p
trÛÛT +

1

q
trV̂V̂T (5.31)

= lim
ε→0

(
1

p
trU(ε)U(ε)T +

1

q
trV(ε)V(ε)T

)
(5.32)

≥ lim
ε→0

ĈFl
(G(ε)) (5.33)

= lim
ε→0

2
√
pq

l∑
k=1

σk(G(ε))/σk(Fl) (5.34)

=
2
√
pq

l∑
k=1

σk(H)/σk(Fl) (5.35)

=
2
√
pq

r∑
k=1

σk(H)/σk(Fl) = ĈFl
(H). (5.36)

Note that the equality (5.34) follows from the fact that the
proposition holds for invertible target matrices, while the
equality (5.35) follows from the continuity of the singular
values as a function of the matrix coefficients. This proves
the proposition. �

Proof of Theorem 5.1: If F is finite dimensional, the theorem
follows from Proposition 5.1 if we take Fl to be Fs. Hence,
assume that F is infinite dimensional and let {e1, e2, . . .} and
{f1, f2, . . .} be the bases corresponding to the representation
of F. Let Û = {û1, . . . , ûm} and V̂ = {v̂1, . . . , v̂n} be the
controls in an optimal solution for the Optimization Problem
(H,F), with corresponding matrices Û and V̂ respectively.
Let

ûi =

∞∑
j=1

aijej , v̂i =

∞∑
j=1

bijfj . (5.37)

Then

I(Û , V̂) =
1

m

m∑
i=1

∞∑
j=1

a2ij +
1

n

n∑
i=1

∞∑
j=1

b2ij , (5.38)

and
H = ÛFV̂T . (5.39)

Define approximating control functions

û
(l)
i =

l∑
j=1

aijej , v̂
(l)
i =

l∑
j=1

bijfj (5.40)

with corresponding m-by-l and l-by-n matrices

Ûl =


a1,1 . . . a1,l
...

. . .
...

am,1 . . . am,l

 , V̂T
l =


b1,1 . . . b1,n
...

. . .
...

bl,1 . . . bl,n

 .
(5.41)

Then, equation (5.38) can be rewritten as

I(Û , V̂) =
1

m
trÛÛT +

1

n
trV̂V̂T (5.42)

= lim
l→∞

(
1

m
trÛlÛ

T
l +

1

n
trV̂lV̂

T
l

)
. (5.43)
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Define the m-by-n approximate target matrix by

Hl =
(
H

(l)
ij

)
= ÛlFlV̂

T
l , (5.44)

where Fl is the l-th principal minor of F. Since F is bounded,

Hij = F (ûi, v̂j) = lim
l→∞

F (û
(l)
i , v̂

(l)
j ) = lim

l→∞
H

(l)
ij . (5.45)

In matrix form:

lim
l→∞

ÛlFlV̂
T
l = lim

l→∞
Hl = H. (5.46)

Since the singular value function is continuous on the space
of m-by-n matrices, for any integer k, 0 ≤ k ≤ m, we have

lim
l→∞

σk(Hl) = σk(H). (5.47)

For any integer l > max(m,n), define the l-by-l augmented
matrix H̃l by

H̃l =

[
Hl 0m,l−n

0l−m,n 0l−m,l−n

]
. (5.48)

Here, 0ij represents an i-by-j zero matrix, (empty when one
of the dimensions is zero.) As argued before, the minimum
control costs for the Optimization Problem (Hl,Fl) and the
Generalized Optimization Problem (H̃l,Fl,m, n) are identi-
cal. By Proposition 5.1,

1

m
trÛlÛ

T
l +

1

n
trV̂lV̂

T
l ≥ ĈFl

(H̃l)

=
2√
mn

l∑
k=1

σk(H̃l)/σk(Fl). (5.49)

Moreover, the last expression in (5.49) can be realized by some
control functions.

The rank of H̃l is equal to the rank of Hl, which is
at most min(m,n), moreover, the first min(m,n) singular
values of the two matrices are identical. It follows that for
k > min(m,n)

σk(H̃l) = 0, (5.50)

and the last expression in (5.49) is equal to

2√
mn

min(m,n)∑
k=1

σk(Hl)/σk(Fl) (5.51)

and can be realized. The first part of the theorem then follows
from:

1

m
trÛÛT+

1

n
trV̂V̂T ≥ lim

l→∞

2√
mn

min(m,n)∑
k=1

σk(Hl)/σk(Fl)

=
2√
mn

min(m,n)∑
k=1

σk(H)/σk(F). (5.52)

Since F is diagonal, σk(Fl) = σk(F) for all integers k and
l, the solution to the Optimization Problem (Hl,Fl) achieves

the control cost given by the lower bound in (5.52). This
completes the proof of Theorem 5.1. �

We conclude the discussion in this section by pointing
out that there is an apparent non-symmetry in the solution
constructed in the proof of Proposition 5.1. Even if H and
F are symmetric, the optimal solution may not be symmetric
in the sense that U and V may not be identical. This would
appear less surprising if one considers the example where H

is [
0 1

1 0

]
, (5.53)

and F is the 2-by-2 identity matrix. Having a symmetric
solution to the optimization problem would imply H is non-
negative semidefinite which is obviously not the case.

6. COST OF DISTRIBUTED ACTION

Results in the preceding section provide an explicit formula
for computing the control cost in the absence of any commu-
nication between the agents. However, if information can be
shared between the agents, controls with lower average cost
of distributed action can be designed. For the B-H system, if
both agents have information on the other agent’s choice, they
can use the following control functions to realize the target,
Hij :

uij(t) = sgn(Hij)
√

2πHij cos(2πt), (6.1)

vij(t) =
√

2πHij sin(2πt). (6.2)

The control energy of such a protocol is 2π|Hij |. Using the
isoperimetric inequality [24], one can show as in [29] that this
is the minimum control cost to realize the single target, Hij .

Hence, if both agents have complete information of the
other agent’s choice, the averaged control cost over all possible
choices (m for Alice and n for Bob) is

J(H) =
2π

mn

m∑
i=1

n∑
j=1

|Hij |, (6.3)

for the B-H system. One can compare this control cost with
the control cost for a single round protocol defined in (2.9) and
note that while the number of control input pairs available to
Alice and Bob is the same in both cases, the number of distinct
controls used by each is typically not.

In order to enable a concrete comparison between single
round protocols and protocols based on completely shared
information we will use the B-H system as an example. First
of all, we consider the case that H is a Hadamard matrix of
order n. Since the entries of such matrices are either 1 or -1,
the averaged control cost with perfect information J(H) is
simply 2π. On the other hand, the singular values of H are all
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equal to
√
n. Thus, by Corollary 5.1 the optimal single round

protocol cost ĈFB
(H) is{

π
√
n

2 (n+ 2) for evenn,
π
√
n

2 (n+ 2 + 1
n ) for oddn.

(6.4)

Thus, the ratio of two control costs is asymptotically (n +

2)
√
n/4.

We can perform a similar comparison for the case of
orthogonal matrices. To do so, we need to quote the following
bounds on the sum of the absolute value of the entries in an
orthogonal matrix. These elementary results on matrices are
provided here for the sake of completeness.

Proposition 6.1. Consider B-H system. For an orthogonal H,

2π

n
≤ 2π

n2

n∑
i,j=1

|Hij | ≤
2π√
n
. (6.5)

For any square matrix H,

2π

n2

n∑
i,j=1

|Hij | ≤
2π

n

n∑
k=1

σk(H). (6.6)

Proof : To prove the lower bound when H is an orthogonal
matrix, use the inequality

n∑
i,j=1

|Hij | ≥
n∑

i,j=1

H2
ij = n. (6.7)

To prove the upper bound, consider the optimization problem,

S = max

n∑
i,j=1

xij (6.8)

subject to the constraint that for all j,
∑n
i=1 x

2
ij = 1. Since

the constraint is weaker than the requirement that the xij’s
form an orthogonal matrix, it follows that

n∑
i,j=1

|Hij | ≤ S = n max
z21+···+z2n=1

n∑
i=1

zi = n
√
n. (6.9)

For the case where H is a general square matrix, decompose
it by SVD so that

H = ΦΛΘ, Λ =


σ1(H) 0 · · · 0

0 σ2(H) · · · 0
...

...
...

...
0 0 · · · σn(H)

 .
(6.10)

where Φ and Θ are orthogonal. For k, 1 ≤ k ≤ n, define an
n-by-n matrix, H(k), by

H(k) = ΦΛkΘ, Λk = diag[0, . . . , 0︸ ︷︷ ︸
k−1

, σk(H), 0, . . . , 0︸ ︷︷ ︸
n−k

],

(6.11)
Then,∑n

i,j=1 |H(k)ij | = σk(H)
∑n
i,j=1 |ΦikΘkj |

≤ σk(H)
∑n
i=1 |Φik|

∑n
i=1 |Θkj | ≤ nσk(H).

(6.12)

From this, it follows that

2π

n2

n∑
i,j=1

|Hij | ≤
2π

n2

n∑
k=1

n∑
i,j=1

|H(k)ij | ≤
2π

n

n∑
k=1

σk(H).

(6.13)
�

This result together with Corollary 5.1 imply the following

Theorem 6.1. For the B-H system and a general n-by-n target
matrix H,

ĈFB
(H)− J(H) ≥ 2π

n

n∑
k=1

(dk/2e − 1)σk(H) ≥ 0. (6.14)

The difference in the control energy is strictly positive if the
rank of H is larger than 2.

If H is an orthogonal matrix, then the optimal single round
cost ĈF (H) is{

π
2 (n+ 2) for evenn,
π
2 (n+ 2 + 1

n ) for oddn.
(6.15)

By comparison,
2π

n
≤ J(H) ≤ 2π√

n
. (6.16)

For example, consider the case where n = 2. The identity
matrix, I2, incurs an averaged cost of π under information
sharing: there are two entries whose computation requires
control energy of 2π; for the other two entries, H12 and H21,
zero control can be used. However, for the case where the
information on the choice is not shared, it is not possible
to save control cost by setting any of the controls to zero,
resulting in a cost increase by a factor of 2. In general, the
control cost ratio grows super-linearly as a function of the
dimension of target matrix.

7. MULTI-ROUND PROTOCOLS

Analysis from the previous section indicates that control
cost can be substantially reduced by using protocols that
allow communication between the agents. For the extreme
scenario where the agents have complete prior information
of each others inputs, optimization of the control cost can be
reduced to solving a family of single output target optimization
problems. For any m-by-n target matrix H and a general
bilinear input-output mapping, F, the averaged control cost for
solving a family of single output target optimization problems
is given by:

J(H) =
2

mnσ1(F)

m∑
i=1

n∑
j=1

|Hij |. (7.1)

This is a generalization of equation (6.3).
If the agents do not have prior information on the inputs to

be selected, they can communicate their input choice to each
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other in a multi-round protocol. Detailed analysis of general
multi-round protocols lies beyond the scope of this paper. We
shall briefly consider two-phase protocols, however, in which
one phase allows partial information to be shared at negligible
cost. The main result here is that if the cost of signaling certain
partial information is negligible, the control cost can be made
arbitrarily close to the lower bound, J(H) that was determined
in the previous section. It is important to note that the protocols
approaching J(H) do not necessarily require the agents to
communicate their choices completely to each other. It will
be shown that the number of bits communicated is related to
the classical communication complexity of computing H. This
result provides insight into the value of information in terms
of the control energy savings that can be achieved through
communication between the agents as they evaluate H.

Various concepts of communication at negligible cost can
be considered. One possible approach to partial information
exchange in a two-phase protocol is to use a side channel in
an initiation phase in which it is assumed that there is no cost
of transmitting some partial information between the agents.
It is in the second phase that this information is used by the
agents to select controls that effect the computation specified
in the single-round protocols of Section 5. Another approach
to information sharing at negligible communication cost is to
assume that under certain circumstances, very low cost control
signals can be used. Formally, for the model (2.3) described in
section 2, we introduce the following concept of ε-signaling
capability.

Definition 7.1. Alice possesses ε-signaling capability around
the initial state x0 if for any ε there exist times, 0 < t1 < t2

and controls u1 and u2 for Alice, v1 for Bob, so that∫ t2

0

(u21 + v21)dt < ε,

∫ t2

0

(u22 + v21)dt < ε. (7.2)

Moreover, when u is set to u1 or u2 and v is set to v1, the
following conditions hold:
1) xu1,v1(t1) 6= xu2,v1(t1), 2) xu1,v1(t2) = xu2,v1(t2) = x0.

One can define similar capability for Bob. For example,
for the B-H system both agents possess ε-signaling capability
as the loop controls can enclose arbitrarily small areas. For
systems in which both agents have ε-signaling capability one
can design multi-round protocols for realizing H with control
cost arbitrarily close to J(H). These protocols consist of two
phases. In the first phase, the agents communicate their choices
of inputs to each other. Based on the information received,
the original target matrix is decomposed into a finite number
of sub-matrices and controls can then be applied to realize
the sub-matrix that corresponds to the choices of the agents.

We call such a protocol a two-phase protocol. To describe the
detail, we recall the definition of a monochromatic matrix, (see
for example [15]).

Definition 7.2. A sub-matrix is said to be monochromatic if
all its entries have the same value.

Given an m-by-n target matrix, H, we can define a set
of sub-matrices, {H1, . . . ,HK}, so that Hk is an mk-by-nk
sub-matrix with its (i, j) entry defined by

Hk(i, j) = Htk,i,sk,j
(7.3)

where tk,i lies in an index set Mk ⊂ {1, . . . ,m} and sk,j

lies in an index set Nk ⊂ {1, . . . , n}. Note that by definition,
|Mk| = mk, |Nk| = nk. Define lk = min(mk, nk).

The set of sub-matrices forms a matrix partition for H if
the following holds:

1) For any i and j with 1 6 i 6 m and 1 6 j 6 n, there
exist k, α, and β such that tk,α = i, sk,β = j.

2) If tk,α = tk′,α′ , sk,β = sk′,β′ , then k = k′, α = α′, and
β = β′.

For example, the following figure shows a sub-matrix par-
tition involving five sub-matrices:

H11 H12

H21 H22

H31

H41

H31

H41

H13 H14

H23 H24

H33 H34

H43 H44


(7.4)

It follows from direct verification that for all k
lk∑
l=1

σ2
l (Hk) = trHkH

T
k =

mk∑
i=1

nk∑
j=1

H2
k(i, j) (7.5)

=
∑

tk,i∈Mk

∑
sk,j∈Nk

H2
tk,i,sk,j

. (7.6)

Thus, for a sub-matrix partition into K sub-matrices,

K∑
k=1

lk∑
l=1

σ2
l (Hk) =

m∑
i=1

n∑
j=1

H2
i,j = trHHT . (7.7)

A sub-matrix partition can be regarded as a decomposition
of a complex distributed control problem into simpler sub-
problems. We can estimate the effectiveness of a decom-
position by calculating the control cost averaged over the
decomposed sub-problems, namely,

A =
1

mn

K∑
k=1

mknkĈF(Hk). (7.8)

The following result provides a lower bound for this averaged
control cost.
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Theorem 7.1. Consider a bounded, bilinear input-output
mapping, F , with a regular matrix representation F. The
average control cost, A, for applying single round protocols
to the sub-matrices in a sub-matrix partition {H1, . . . ,HK}
of H satisfies the lower bound:

A =
1

mn

K∑
k=1

mknkĈF(Hk) ≥ 2

mnσ1(F)

m∑
i=1

n∑
j=1

|Hij |.

(7.9)
If all the sub-matrices are monochromatic, this lower bound
is the infimum value of A.

Proof :

A =
1

mn

K∑
k=1

mknkĈF(Hk) (7.10)

≥ 2

mn

K∑
k=1

√
mknk

lk∑
l=1

σl(Hk)/σl(F) (7.11)

≥ 2

mnσ1(F)

K∑
k=1

√
mknk

lk∑
l=1

σl(Hk) (7.12)

≥ 2

mnσ1(F)

K∑
k=1

(
mknk

lk∑
l=1

σ2
l (Hk)

)1/2

(7.13)

=
2

mnσ1(F)

K∑
k=1

mknk

mk∑
i=1

nk∑
j=1

H2
k(i, j)

1/2

(7.14)

≥ 2

mnσ1(F)

K∑
k=1

mk∑
i=1

nk∑
j=1

|Hk(i, j)| (7.15)

=
2

mnσ1(F)

m∑
i=1

n∑
j=1

|Hij |. (7.16)

(7.15) follows from the well-known inequality that for any
real numbers, (x1, . . . , xp)

p

p∑
i=1

x2i ≥

(
p∑
i=1

xi

)2

(7.17)

with equality holding if and only if all the xi’s equal to each
other.

According to Theorem 5.1 the infimum value of A is given
by the right-hand-side of (7.11). If all the sub-matrices are
monochromatic, then σl(Hk) if l > 1. Hence inequalities
(7.12), (7.13), and (7.15) all become equality, and the last
expression in (7.16) is the infimum value. �

In the first phase of a two-phase protocol, the agents
communicate with each other via the dynamic system by
means of ε signals. The bit sequence defined by the commu-
nication complexity protocol can be regarded as an algorithm
to identify the chosen sub-matrix in a given partition. We can
visualize the algorithm by moving down a binary tree, so that
depending on the value of the bit sent by either one of the

agents in the communication protocol, we descend from a
given node to its left or right child. For additional details
about communication protocol,we refer to [15] or [28]. To
make explicit contact with [15], suppose that each sub-matrix
in the given matrix partition is monochromatic. The number
of leaves in the binary tree that defines the protocol is equal
to the number of sub-matrices defining the partition, and each
of these sub-matrices is mapped to one of the leaves of the
binary tree. The maximum number of bits communicated in
the protocol is equal to two times the depth of the tree. (Since
the communication has to pass through the dynamic system,
if Alice wants to send one bit of information to Bob, the bit
has to pass from Alice to the dynamic system and from the
dynamic system to Bob, leading to two communication bits
being exchanged.) The protocol complexity is thus defined as
two times the height of the binary tree and can provide an
upper bound for control communication complexity.

For illustration, consider a target function,

H =

 1 1 1 1
1 1 5 5
2 3 5 5
2 3 5 5

 (7.18)

The sub-matrix partition shown in (7.4) represents a decom-
position of the target matrix into the minimum number of
monochromatic blocks. (Such minimal decomposition is not
unique.) One can define a communication protocol to identify
the components of the matrix partition (monochromatic blocks
in this case) as follows.

Protocol to communicate the structure of a matrix parti-
tion: Assume that Alice controls the choice of columns and
Bob controls the choice of rows.

1) Alice sends a bit to Bob with value 0 if she chooses the
first 2 columns, otherwise she sends 1.

2) Upon receiving a bit of value 1 from Alice, Bob sends
a bit to Alice with value 0 if he chooses the first row,
otherwise, he sends a bit of value 1. No further bit needs
to be sent.

3) On the other hand if a bit of value 0 is received from
Alice, Bob sends a bit to Alice with value 0 if he chooses
the first two rows, otherwise he sends a bit 1. Only in
the latter case, Alice sends one more bit, with value 0
if she chooses the first column and 1 if she chooses the
second column.

The communication protocol can be represented by the
binary tree shown in Figure 1. A maximum of six bits
(counting bits sent by the dynamic system) are needed in order
to guarantee all sub-matrices can be identified.
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Fig. 1. Binary tree of a communication protocol to realize the partition
defined by the matrix in equation (7.4).

In our two-phase protocol, once the communication phase
is completed—which is to say that the phase-one protocol
has run to completion and a leaf node identifying a sub-
matrix has been reached, the second phase of the protocol
starts. The target matrix that is collaboratively evaluated by the
agents in phase two is the sub-matrix that had been selected in
phase one. It is assumed that in phase one, communication of
negligible cost (e.g. ε-signaling) occurs, but that in phase two,
open-loop controls of the form described in Section 5 realize
the output specified in the chosen sub-matrix. It is clear that
one can construct two-phase protocols with total control cost
arbitrarily close to (7.1), the lower bound for all protocols
realizing H. We summarize the results in this section in the
following theorem.

Theorem 7.2. Consider a bounded, bilinear input-output
mapping, F , with a regular matrix representation F. Suppose
both agents have ε-signaling capability around the initial state.
Let H be an m-by-n target matrix. The infimum control cost
of any multi-round protocol that realizes H is given by:

J(H) =
2

mnσ1(F)

m∑
i=1

n∑
j=1

|Hij |. (7.19)

By comparing the control cost of an optimal single round
protocol as given by (5.1) with that of the multi-round protocol
(7.19), one can estimate the value of communicated bits in
reducing the control energy cost. Using the target matrix H

of (7.18) as an example, for the B-H system the minimal
control cost without using any communication is defined in
equation (5.2) and has a value of 7.68π. If communication cost
is negligible then the minimal control cost is approximated by
the right-hand-side of (7.9) and has a value of 2.88π. This
can be achieved by the information sharing protocol shown
in Figure 1, which has a protocol complexity of 6 (= two

times the length of the binary tree). The protocol complexity
is a “worst case” metric, reflecting the maximum number of
bits that might need to be communicated. Thus, the value of a
single communication bit in reducing the control energy cost
for this problem is at least 0.8π with the units being control
energy (as defined by (2.8)) per bit.

8. CONCLUSION

This paper has continued our study of problems in con-
trol communication complexity, which may be viewed as an
extension of classical communication complexity with the
additional focus on control cost. There are several important
application contexts in which the optimization problems of the
type we have considered seem to arise naturally. The single
round protocols for steering the B-H system realizes the solu-
tion to a problem in distributed computing where independent
agents act to evaluate a function without foreknowledge of
each other’s choices. As was noted in [2], the problems also
arise naturally in what we have called the standard parts
optimal control problem in which it is desired to find a specific
number, m, of control inputs to a given input-output system
that can be used in different combinations to attain a certain
number, n, of output objectives so as to minimize the cost of
control averaged over the different objectives. The connection
with quantum control, and in particular, the control of quantum
spin systems (see for example the references to quantum
control and computation in [29]) is another interesting line of
investigation that is under way and will be treated elsewhere.
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