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Abstract. Protocol sequences are binary and periodic sequences used
in multiple-access scheme for collision channel without feedback. Each
user reads out the bits from the assigned protocol sequence periodically,
and sends a packet whenever the bit is equal to one. It is assumed that
any two or more packets overlapping in time result in a collision, and
the collided packets are unrecoverable. Due to the lack of feedback and
cooperation, there are some relative delay offsets between protocol se-
quences. We consider protocol sequences with the property, called user-
irrepressibility, that each user is guaranteed to send at least one packet
in each sequence period without collision, no matter what the delay off-
sets are. The period length is hence a measure of delay; each user need
to wait no more than a period time before a successful transmission can
be made. Our objective is to construct user-irrepressible sequences with
sequence period as short as possible. In this paper, we present a new
construction for prime number of users. A lower bound on period which
is applicable in general for any number of users is also derived.

Keywords: Protocol sequences, conflict-avoiding codes, collision channel with-
out feedback.

1 Introduction

We consider packetized multiple-access transmission system in which time is
divided into time slots, and assume slot synchronization. A user who wants to
transmit a packet must send the packet within a time slot. If exactly one user
transmits in a time slot, then the packet is received error-free. However, when
two or more users send simultaneously in a time slot, we have a collision and the
collided packets are assumed unrecoverable.

We assume that there is no communication among the transmitting nodes.
The transmission scheme is thus fully distributed. Also, as argued in [5], infor-
mation is transmitted via the content of the packets only, but not via the channel
access times of the users. The decision of whether transmitting a packet or not
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in a time slot is independent of the data to be sent. Without loss of generality,
the scheduling of packets is done by assigning each user a deterministic binary
sequence, call protocol sequence. Each user reads out the bits from the assigned
protocol sequence periodically, and sends a packet if and only if the value is
equal to one. The users may start their communication at different times. Since
we do not assume any feedback from the receiver and cooperation among the
users, this incurs relative delay offsets between protocol sequences. We assume
that the relative delay offsets of the protocol sequences are arbitrary but fixed
throughout the transmission session.

Our design objective, called user-irrepressibility [11], is to guarantee in the
worst case that each user is able to send at least one packet successfully to the
sink node in each period. In other words, no mater what the relative delay offsets
are, there is at least one successful packet for each user in each period. This can be
re-phrased in terms of the sequence matrix as follow. Given M binary sequences
of length L, we cyclically shift each of them and stack them together in an
M ×L matrix, one row for each sequence. The sequences are user-irrepressible if
no matter what the cyclic shifts are, the resulting M ×L matrix always contains
an M × M identity matrix as a submatrix. The common period of a set of
user-irrepressible sequences measures the maximum waiting time until a packet
can be sent successfully. This bounded-delay requirement finds application in
medical systems [7] and body sensor networks [13] for instance. Let Lmin(M)
be the smallest L such that a set of M user-irrepressible sequences of common
period L exists. Previous work in [2] shows that Lmin(M) is lower bounded by
1 +M(M + 1)/2.

The notion of user-irrepressibility is addressed in another context, under the
name of conflict-avoiding codes (CAC) (see e.g. [4] [6] and the references therein)
with different perspective. In the study of CAC, there are T potential users, and
at most M of them are active at the same time. Given the sequence period L,
the objective in the construction of CAC is to maximize the number of potential
users T , with the guarantee of at least one packet received successfully from
each active user in a period time, provided that the number of active users is no
more than M . In this paper, we consider the case where all users are active, and
minimize the period for fixed number of users.

In this paper we assume slot synchronism. If frame synchronization, which
is stronger than slot synchronization, is allowed, the problem has a trivial time-
division multiple-access (TDMA) solution, namely, the sequence period is L = M
and the ith user sends a packet in the ith time slot. Collision can be totally
avoided in this case. However, with slot synchronization, the relative delay offsets
among sequences are nonzero and uncontrollable.

This paper is organized as follows. After setting up the notations in Section 2,
we review some existing constructions of user-irrepressible sequences in Section 3.
A new construction of user-irrepressible sequence is given in Section 4. A method
for computing a lower bound for Lmin(M) is presented in Section 5. The current
status of our knowledge on Lmin(M) is summarized at the end of this paper.



2 Notations and Preliminaries

We represent a periodic sequence with period L by a sequence of finite length L.
We will use “period” and “length” interchangeably. The Hamming weight of
a binary sequence a(t), denoted by wH(a), is the number of 1’s in a period.
The Hamming cross-correlation between two sequences a(t) and b(t), denoted
by Hab(τ), is defined as

Hab(τ) :=
L−1∑
t=0

a(t)b(t− τ).

Let ZL = {0, 1, 2, . . . , L− 1} denote the residues of integer modulo L. Given
a binary sequence s(t) of length L, we define the characteristic set of s(t) by

Is := {t ∈ ZL : s(t) = 1}.

A cyclic shift of a sequence s(t) by τ corresponds to a translation of Is by τ
in ZL. Given any subset A of ZL, we define the sum of A and an element x in
ZL by

A+ x := {a+ x ∈ ZL : a ∈ A}.

A cyclic shift of s(t) by τ is thus represented by Is + τ . The Hamming cross-
correlation between two binary sequence s1 and s2, with delay offset τ , is equal
to the cardinality of

Is1 ∩ (Is2 + τ).

Consider a collection of subsets S = {I0, I1, . . . , IM−1} of ZL. This specifies
a set of M binary sequences {s0(t), s1(t), . . . , sM−1(t)} by letting the ith subset
Ii in S be the characteristic set of si(t). We say that Ii is cyclically covered by
the other sets in S if we can find some integers τj , for j ∈ {1, 2, . . . ,M−1}\{i},
such that

Ii ⊆
∪
j ̸=i

(Ij + τj)

The sequence si(t) corresponding Ii is then said to be blocked by the other
sequences. If there is a set in S which is cyclically covered by the others, or
equivalently if there is a sequence which is blocked by the other sequences, we
say that S is user-repressible. Otherwise, S is said to be user-irrepressible (UI).
We use UIS(L,M) to denote a collection of M user-irrepressible subsets in ZL.
We will abuse notation and use UIS(L,M) for the corresponding set of binary
sequences as well.

UI sequences are related to another combinatorial structure called cover-free
family [3]. A collection of sets F is called r-cover-free if F0 ̸⊂ F1 ∪F2 ∪ . . .∪Fr

for all F0, F1, . . . ,Fr ∈ F (Fi ̸= Fj if i ̸= j). A collection of M binary sequences
is UI if for all possible choices of delay offsets τi, the translated characteristic
sets Ii + τi, for i = 0, 1, . . . ,M − 1, form an (M − 1)-cover-free family.



As a “non-example”, consider the following three sequences of length 7:

s1(t) : 1110000

s2(t) : 1010100

s3(t) : 1001001

The first sequence s1(t) can be blocked by s2(t) and s3(t), because I1 = {0, 1, 2}
is contained in

I2 ∪ (I3 + 1) = {0, 1, 2, 4}.
These three binary sequences are hence not UI.

A sequence set is said to be constant-weight if all sequences have the same
Hamming weight. A constant-weight UI sequence set with Hamming weight w
is denoted by UIS(L,M,w). Several existing constructions of constant-weight UI
sequences are reviewed in the next section. A new construction of non-constant-
weight UI sequences will be described in Section 4.

3 Known Constructions of UI Sequences

Shift-Invariant Sequences (SIS). Shift-invariant sequences are studied in [5] as
an essential ingredient for achieving the capacity of the collision channel without
feedback. This class of protocol sequences has the property that all Hamming
cross-correlation functions of order two or higher are constant. From the con-
struction of SIS, we obtain constant-weight UIS(2M ,M, 2M−1) for M ≥ 2. For
example, the following are three constant-weight UI sequences which are shift-
invariant:

s0(t) : 1 0 1 0 1 0 1 0,

s1(t) : 1 1 0 0 1 1 0 0,

s2(t) : 1 1 1 1 0 0 0 0.

However, it is proved in [9] that the period of SIS increases exponentially as
a function of the number of users. Shift-invariant sequences are of practical
interests only when the small number of users is small.

Extended Prime Sequences (EPS). For prime p, a construction of constant-
weight UIS(p(2p−1), p, p) is given in [12]. Let [x mod p] denote the unique integer
between 0 and p− 1 such that

x = qp+ [x mod p]

holds for some integer q. For g = 1, 2, . . . , p, the gth extended prime sequence is
defined by setting the characteristic set of the gth sequence to

Ig = {j(2p− 1) + [gj mod p] : j = 0, 1, . . . , p− 1}.

It can be shown that the Hamming cross-correlation between two distinct EPS
is at most one. As the Hamming weight of each sequence is p, this implies that
the extended prime sequences enjoy the UI property.



CRT Sequences. Given a positive integer M , let p be the smallest prime number
which is larger than or equal to M . A constant-weight UIS(p(2M − 1),M,M)
can be constructed as follows. By Bertrand’s postulate [1, Chapter 2], p can be
chosen between M and 2M−2, and hence p and 2M−1 are relatively prime. We
apply Chinese remainder theorem (CRT) and identify Zp(2M−1) with the direct
sum Zp ⊕ Z2M−1; the bijection φ : Zp(2M−1) → Zp ⊕ Z2M−1 is given by

φ(x) := (x mod p, x mod 2M − 1).

For g = 1, 2, . . . , p, the gth sequence is defined by setting the corresponding
characteristic set to

Ig = {t ∈ ZL : φ(t) = (jg mod p, j), j = 0, 1, . . . ,M − 1}.

It is shown in [10] that the Hamming cross-correlation between two distinct CRT
sequences is at most one. This guarantees that the constructed sequences are UI.

4 A New Construction Based on CRT for Prime Number
of Users

We present a variation of the CRT construction in this section. Even though the
two constructions look similar, the proof of user-irrepressibility is very different.
The new sequences are not constant-weight, and are shorter than the extended
prime sequences with the same number of users.

Let p be an odd prime. Since p and 2p−2 are relatively prime, by the Chinese
remainder theorem, there is an isomorphism θ from Zp(2p−2) to Zp⊕Z2p−2, given
by

θ(t) := (t mod p, t mod 2p− 2).

We will henceforth identify Zp(2p−2) with Zp ⊕ Z2p−2. The new class of UI se-
quences is specified by the corresponding characteristic sets in Zp ⊕ Z2p−2. For
g = 0, let

I0 = {(i, 0) : i = 0, 1, . . . , p− 1}, (1)

and for g = 1, . . . , p− 1, let

Ig = {(gj mod p, j) : j = 0, 1, 2, . . . , p}. (2)

This produces p sequences of length p(2p− 2). The first sequence is of weight p,
and the remaining sequences are of weight p+1. We call this construction CRTp,
and distinguish it from the previous CRT construction by subscript “p”.

A cyclic shift of a sequence by τ corresponds to adding θ(τ) to the corre-
sponding characteristic set. We will use the notation

Ig + (a, b) := {(x, y) + (a, b) : (x, y) ∈ Ig},

with the addition carried out in Zp⊕Z2p−2. We note that the sets in (1) and (2)
are arithmetic progressions in Zp ⊕ Z2p−2. For (x, y) ∈ Zp ⊕ Z2p−2 and integers



k1 ≤ k2, we will use (x, y) · [k1, k2] to represent an arithmetic progression with
common difference (x, y),

{(k1x, k1y), ((k1 + 1)x, (k1 + 1)y), . . . , (k2x, k2y)}.

In this notation, the characteristic sets in (1) and (2) are (1, 0) · [0, p − 1] and
(g, 1) · [0, p].

Lemma 1. For each (a, b) ∈ Zp ⊕Z2p−2 and h = 1, 2, . . . , p− 1, (1, 0) · [0, p− 1]
and (h, 1) · [0, p] + (a, b) contains at most one common element.

Proof. If (i, 0) = (hj + a, j + b), for some i = 0, 1, . . . , p− 1 and j = 0, 1, . . . , p,
then by equating the second components, the value of j is uniquely determined by
j = −b mod 2p−2. The value of i is then uniquely determined as well by equating
the first components. This shows that if (1, 0) · [0, p] and (h, 1) · [0, p− 1] + (a, b)
have nonempty intersection, the intersection contains exactly one element. ⊓⊔

Lemma 2. For each (a, b) ∈ Zp⊕Z2p−2 and distinct g and h in {1, 2, . . . , p−1},
(g, 1) · [0, p] and (h, 1) · [0, p] + (a, b) contains at most two common elements.

Proof. Suppose that there are two or more common elements in (g, 1) · [0, p] and
(h, 1) · [0, p] + (a, b). Let A and B be two of them. We have

A = (gj1, j1) = (hj′1 + a, j′1 + b) (3)

B = (gj2, j2) = (hj′2 + a, j′2 + b) (4)

for some j1, j2, j
′
1, j

′
2 ∈ {0, 1, . . . , p}, j1 ̸= j2 and j′1 ̸= j′2.

Let δ := j2− j1 and δ′ := j′2−j′1. Both δ and δ′ assume value in the following
range

{−p,−(p− 1), . . . ,−2,−1} ∪ {1, 2, . . . , p− 1, p}. (5)

By interchanging the values of j1 and j2 if necessary, we consider only δ ∈
{1, 2, . . . , p} without loss of generality.

After subtracting (3) from (4) and equating the two components, we obtain
the following system of modular equations

gδ = hδ′ mod p, (6)

δ = δ′ mod 2p− 2. (7)

For δ = 1, 2, . . . , p − 3, (6) and (7) have no common solution. Indeed, the
only δ′ in the range of (5) which equals δ mod 2p− 2 is δ′ = δ, and from (6), we
obtain (g − h)δ = 0 mod p, which contradicts the assumption that g ̸= h.

For δ = p − 2, (6) and (7) also have no common solution. In this case, δ′ is
equal to either p − 2 and −p by (7). The possibility of δ′ = p − 2 is forbidden
because otherwise we would obtain the contradiction g = h from (6). On the
other hand, if δ′ = −p, we get g(p− 2) = 0 mod p from (6), which implies that
g = 0 mod p. Again, we arrive at a contradiction.

In the following, we consider the two remaining cases: δ = p and δ = p− 1.



(i) Suppose δ = p. The value of δ′ is equal to either p or −(p−2) by (7). The
latter is not feasible, because after substituting δ = p and δ′ = −(p−2) into (6),
we obtain

0 = −h(p− 2) mod p,

which contradicts the assumption that h is nonzero. Hence, we must have δ′ =
δ = p. Since the range of j1, j2, j

′
1 and j′2 is {0, 1, . . . , p}, we obtain j1 = j′1 = 0,

and j2 = j′2 = p. By substituting j1 = j′1 = 0 into (3), we thus get a = b = 0.
This solution is tabulated in the first row of Table 1.

(ii) Suppose δ = p − 1. The values of δ′ which satisfy (7) are ±(p − 1). We
cannot have δ′ = p−1, because it implies g = h mod p by (6). The only choice of
δ′ is thus δ′ = −(p− 1). In this case, we have δ = −δ′ and g = −h mod p. Since
δ = p − 1, the corresponding pairs of j1 and j2 are (a) j1 = 0 and j2 = p − 1,
and (b) j1 = 1 and j − 2 = p. Likewise, since δ = −(p − 1), the corresponding
pairs of j′1 and j′2 are (a’) j′1 = p− 1 and j′2 = 0 and (b’) j′1 = p and j′2 = 1. The
four different combinations are summarized in the last four rows of Table 1.

As h is between 1 and p − 1, each pair of (a, b) in the last two columns of
Table 1 are distinct. For fixed values of a and b, if (gj, j) = (hj′ + a, j′ + b)
has two solutions (j1, j

′
1), (j2, j

′
2), they must be associated with one of the rows

in Table 1. Therefore, (g, 1) · [0, p] and (h, 1) · [0, p] + (a, b) contain exactly two
common elements for precisely five different combinations of a and b listed in
Table 1. This excludes the possibility of having three or more common elements.

⊓⊔

j1 j2 j′1 j′2 a mod p b mod 2p− 2

0 p 0 p 0 0
0 p− 1 p− 1 0 h p− 1
0 p− 1 p 1 0 p− 2
1 p p− 1 0 0 p
1 p p 1 −h p− 1

Table 1. Solutions to (3) and (4)

Lemmas 1 and 2 show that the Hamming cross-correlation of two sequences
from the CRTp is either 0, 1 or 2. In fact, if h = −g mod p, the number of
occurrences of 2 as a cross-correlation value is exactly five. For distinct h and
g in {1, 2, . . . , p − 1} such that h ̸= −g mod p, only the first row in Table 1 is
feasible, and the Hamming cross-correlation equals 2 when and only when the
relative delay offset is zero.

Theorem 1. For prime number p, the sequences from the CRTp construction
form a UIS(2p(p− 1), p).

Proof. Let Ii, i = 0, 1, . . . , p − 1, be the characteristic set from the CRTp con-
struction, and τi be the relative delay offsets.



Consider the first sequence, which is represented by I0. By Lemma 1, I0 and
Ih + θ(τh) have at most one common elements, for h = 1, 2, . . . , p− 1. Since I0
contains p elements and there are only p− 1 other users, we can find an element
in I0 which is not contained in

∪p−1
h=1(Ih + θ(τh)). Hence I0 cannot be cyclically

covered no matter how the delay offsets are chosen.
Next, we show that for each g ∈ {1, 2, . . . , p − 1}, Ig cannot be cyclically

covered by the others. Suppose without loss of generality that τg = 0. Let ḡ
denote −g mod p. We have seen in the proof of Lemma 2 that Iḡ is the only one
whose translates can overlap Ig with intersection other than (0, 0) and (0, p).

Let J denote Ig ∩ (Iḡ + (θ(τḡ))). We consider two cases.
(i) |J | = 0, 1. Let

A := {h ∈ {0, 1, . . . , p− 1} \ {g} :
∣∣Ig ∩ (Ih + θ(τh))

∣∣ = 2},

and B be {0, 1, . . . , p− 1} \ ({g}∪A ). In other words, A (resp. B) corresponds
to the set of sequences whose Hamming cross-correlation with sg is equal to two
(resp. one). By assumption, we have ḡ ∈ B. For all h ∈ A , we have

Ig ∩ (Ih + θ(τh)) = {(0, 0), (0, p)}.

(the first row in Table 1). Then∣∣∣Ig ∩ ∪
h̸=g

(Ih + θ(τh))
∣∣∣ ≤ ∣∣∣ ∪

h∈A

(Ig ∩ (Ih + θ(τh)))
∣∣∣+ ∣∣∣ ∪

h∈B

(Ig ∩ (Ih + θ(τh)))
∣∣∣.

If A is empty, then the first term on the right hand side is zero, and the second
term is no more than p−1. If A is not empty, then the first term is equal to two,
and the second term is no more than p − 2. In any case, the sum on the right
hand side does not exceed p. Since |Ig| = p+ 1, we see that Ig is not contained
in

∪
h̸=g(Ih + θ(τh)).
(ii) |J | = 2. In this case, J equals either {(0, 0), ((p − 1)g, p − 1)}, or

{(g, 1), (0, p)} (the last four rows in Table 1). For h ̸∈ {g, ḡ}, we claim that

|(Ig \ J ) ∩ (Ih + θ(τh))| ≤ 1. (8)

If |Ig ∩ (Ih + θ(τh))| = 1, then (8) follows immediately. Otherwise, if Ig and
Ih+ θ(τh) have two elements in common, then these two elements are (0, 0) and
(0, p) (the first row in Table 1). Either (0, 0) or (0, p) is in common with J . This
implies

|(Ig \ J ) ∩ (Ih + θ(τh))| = 1

and finishes the proof of the claim. Hence,∣∣∣Ig ∩ ∪
h ̸=g

(Ih + θ(τh))
∣∣∣ ≤ |J |+

∣∣∣ ∪
h̸={g,ḡ}

(Ig \ J ) ∩ (Ih + θ(τh))
∣∣∣.

As the second term on the right hand side is no more than p − 2, we see that
the sum is less than or equal to p. Since |Ig| = p + 1, this completes the proof
that Ig cannot be cyclically covered. ⊓⊔



Example: Let p = 7. The CRTp construction produces a set of seven UI se-
quences of period 84. The characteristic sets are:

I0 = {0, 12, 24, 36, 48, 60, 72}, I1 = {0, 1, 2, 3, 4, 5, 6, 7},
I2 = {0, 7, 17, 27, 37, 54, 64, 74}, I3 = {0, 7, 18, 29, 40, 51, 62, 73},
I4 = {0, 7, 16, 25, 41, 50, 66, 75}, I5 = {0, 7, 15, 30, 38, 53, 61, 76},
I6 = {0, 7, 13, 26, 39, 52, 65, 78}.

The period of UI sequences obtained by construction CRTp is shorter than
the period from EPS. The shortest known periods of UI sequences, for M =
1, 2, . . . , 12, are shown in Table 2 in the next section.

Remark: We can generalize the construction in (2) by defining

Ig := {(gj mod p, fj mod q) : j = 0, 1, 2, . . . , p}

for some integer f which is relatively prime with q. It can be proved in a similar
way that the resulting sequences are UI. The original construction is a special
case with f = 1.

5 Lower bound on period

The property of user-irrepressibility can be interpreted as a two-person game.
Player 1 writes down a set ofM binary sequences of length L. Then Player 2 tries
to adjust the delay offsets and block one of the sequences. If Player 2 succeeds
in doing so, the binary sequences are not UI, otherwise, the Player 1 wins and
the binary sequences are UI. In this section, we describe a greedy algorithm for
Player 2, called blocking algorithm, and derive a sufficient condition under which
Player 2 has a sure win, no matter what Player 1 writes down in the first place.
Under this condition, one of the protocol sequence is blocked by the others, and
hence the sequence set cannot be UI. This gives a lower bound on the period of
UI sequences.

Blocking algorithm

Inputs: A set of M binary sequences of length L, s0(t), s1(t), . . . , sM−1(t).

(1) Re-label the sequences so that the Hamming weight of s0(t) is smallest
among the M binary sequences. Set k = 1.

(2) Cyclically shift sk(t) so that the Hamming cross-correlation between s0(t)
and sk(t) is maximal.

(3) Set the 1’s in s0(t) which overlap with the shifted version of sk(t) to zero.

(4) If k < M − 1, increment k by one and go back to step (2).

If all of the 1’s in s0(t) is removed after the termination of the blocking
algorithm, then s0(t) is blocked and Player 2 wins.



Theorem 2. Let s0(t), s1(t), . . . , sM−1(t) be M binary sequences of length L.
Suppose s0 has the smallest Hamming weight, i.e., wH(s0) = w and wH(si) ≥ w
for i = 1, . . . ,M − 1. Define an integer sequence (rk(w,L))

∞
k=0 recursively by

r0(w,L) := w (9)

rk(w,L) := rk−1(w,L)−
⌈w
L
rk−1(w,L)

⌉
, for k ≥ 1. (10)

If rM−1(w,L) = 0, then s0(t) is blocked by s1(t), s2(t), . . . , sM−1(t).

Proof. We will use the following fact: For two binary sequences a(t) and b(t) of
period L and Hamming weight wH(a) and wH(b), we have

L−1∑
τ=0

Hab(τ) = wH(a)wH(b). (11)

The proof of this fact is straightforward, and can be found in [8].
Let x0(t) be the sequence s0(t). We will recursively define M − 1 sequences

x1(t), x2(t), . . . , xM−1(t), and prove by induction that wH(xk) = rk(w,L), for
k = 1, 2, . . . ,M − 1. The sequence xk(t) corresponds to what we get after step
(3) in the blocking algorithm. Note that the Hamming weight of x0(t) is equal
to r0(w,L) = w. Because wH(x0) = w and wH(s1) ≥ w, from (11), we obtain

1

L

L−1∑
τ=0

Hx0s1(τ) =
wH(x0)wH(s1)

L
≥ w2

L
.

The mean Hamming cross-correlation, averaged over all τ , is no less than w2/L.
We pick a delay offset for s1(t), say τ1, so that Hx0s1(τ1) ≥ ⌈w2/L⌉, and define a
binary sequence x1(t) by removing ⌈w2/L⌉ 1’s from x0(t) which overlap with the
1’s in the shifted version of s1(t). Here we slightly modify the blocking algorithm;
in order to make the analysis more tractable, the number of 1’s we take away
from x0(t) is exactly ⌈w2/L⌉, instead of the maximal Hamming cross-correlation
between x0(t) and s1(t). After the first step, we have wH(x1) = w − ⌈w2/L⌉ =
r1(w,L).

Given xk−1(t), we recursively define xk(t) in a similar fashion. In the kth
step, we have

1

L

L−1∑
τ=0

Hxk−1sk(τ) =
wH(xk−1)wH(sk)

L
≥ rk−1(w,L) · w

L
.

We can find a particular cyclic shift of sk(t) so that the Hamming cross-correlation
between xk−1 and sk is at least ⌈w

L rk−1(w,L)⌉. We remove exactly ⌈w
L rk−1(w,L)⌉

1’s in xk−1 which overlap with the shifted version of sk(t), and call the resulting
sequence xk(t). Again, the total number of overlapping 1’s may be more than
⌈w
L rk−1(w,L)⌉ but we only remove ⌈w

L rk−1(w,L)⌉ of them. After the kth step,
we have wH(xk) = rk(w,L).

If rM−1(w,L) is zero, then there is no more 1 in xM−1(t). In this case, s0(t)
is blocked by s1(t), s2(t), . . . , sM−1(t). ⊓⊔



We apply Theorem 2 several times, once for each w ∈ {1, 2, . . . , L}. If
rM−1(w,L) is zero for all w = 1, 2, . . . , L, then for any M sequences of length L,
the blocking algorithm can always succeed in blocking one of the sequences. We
thus have the following necessary condition for the existence of UI sequences.

Theorem 3. Let rk(w,L) be defined by (9) and (10). If rM−1(w,L) = 0 for
w = 1, 2, . . . , L, and L ≤ L0, then UIS(L0,M) does not exist, i.e., Lmin(M) is
strictly larger than L0.

As an example, we consider the case when M = 3. We tabulate r2(w,L) in
the following table.

L r2(1, L) r2(2, L) r2(3, L) r2(4, L) r2(5, L) r2(6, L) r2(7, L) r2(8, L)

1 0
2 0 0
3 0 0 0
...

...
...

...
7 0 0 0 0 0 0 0
8 0 0 0 1 0 0 0 0

The value of r2(w,L) is zero for all w when L is less than or equal to 7. The first
non-zero entry occurs when L = 8 and w = 4, and r2(4, 8) is equal to one. By
Theorem 3, we conclude that Lmin(3) ≥ 8. In fact, a set of three UI sequences
of length eight exists and is exhibited in Section 3. Therefore, Lmin(3) = 8.
Furthermore, since r2(w, 8) is positive only when w = 4, the smallest Hamming
weight in an UIS(8, 3) must be equal to four. The protocol sequences in the
example in Section 3 indeed have Hamming weight equal to four.

We investigate the integer sequence (rk(w,L))
∞
k=0 defined in (9) and (10)

in more details. We observe that for any fixed w and L, the value of rk(w,L)
is monotonically decreasing as k increases, and stabilizes at 0 eventually. For
instance, if w ≤

√
L, then ⌈wrk(w,L)/L⌉ = 1 for k = 0, 1, . . . , w−1. The integer

sequence (rk(w,L))
∞
k=0 in this case is

w, w − 1, w − 2, . . . , 3, 2, 1, 0, 0, . . . .

Suppose that w is in the range
√
L < w ≤

√
2L. The decrease of Hamming

weight after a step in the blocking algorithm is equal to two whenever

rk−1(w,L)− rk(w,L) =
⌈w
L
rk−1(w,L)

⌉
= 2.

This happens when 1 < (w/L)·rk−1(w,L) ≤ 2. The integer sequence (rk(w,L))
∞
k=0

for
√
L < w ≤

√
2L is

w, w − 2, . . . , n1 + 2︸ ︷︷ ︸
n2

, n1, n1 − 1, . . . , 1︸ ︷︷ ︸
n1

, 0, . . . ,

where n1 and n2 denote the number of terms with a step size of −1 and −2
respectively. We note that n1 + 2n2 = w.

In general, we have the following



Theorem 4. Let w ≤ L be fixed integers, and α be ⌈w2/L⌉. Then

rM−1(w,L) > 0 implies M ≤ w

α
+

L

w

α∑
i=2

1

i
.

Proof. In this proof, we simplify notation and write rk instead of rk(w,L). For
i = 1, 2, . . . , α, let ni be number of integers rk in (rk)

∞
k=0 such that rk−rk+1 = i.

The integers n1, n2, . . . , nα satisfy the relation

n1 + 2n2 + 3n3 + . . .+ αnα = w. (12)

Now, consider the terms rk in (rk)
∞
k=0 which satisfy rk − rk+1 = i, i.e.,

rk − rk+1 = ⌈wrk/L⌉ = i.

We obtain from the last equality that wrk/L > i− 1. Therefore, the rk’s which
satisfy rk − rk+1 = i must lie in the range

(i− 1)
L

w
< rk ≤ w −

α∑
j=i+1

jnj . (13)

Furthermore, if rki is the smallest rk in (rk)
∞
j=0 such that rki − rki+1 = i, then

rki−1 ≤ (i− 1)L/w < rki .
The range in (13) may be empty, in which case there is no rk which satisfies

rk − rk+1 = i and ni = 0. If it is not empty, then

ni ≥
1

i

((
w −

α∑
j=i+1

jnj

)
− (i− 1)

L

w

)
,

since the difference between two adjacent rk’s in this range is precisely i. We
simplify the above inequality to

(i− 1)
L

w
+

α∑
j=i

jnj ≥ w. (14)

Inequality (14) is valid for i = 1, 2, . . . , α, and reduces to (12) when i = 1.
For i = 2, 3, . . . , α, divide both sides of (14) by i(i−1), and add the resulting

inequalities,
α∑

i=2

L

iw
+

α∑
i=2

α∑
j=i

jnj

i(i− 1)
≥

α∑
i=2

w

i(i− 1)
. (15)

After exchanging the order of the double summation, we can rewrite (15) as

α∑
i=2

L

iw
+

α∑
j=2

nj(j − 1) ≥ w
(
1− 1

α

)
w −

α∑
j=2

nj(j − 1) ≤ w

α
+

L

w

α∑
i=2

1

i
.



We replace w on the left hand side by
∑α

j=1 jnj , and obtain

α∑
j=1

nj ≤
w

α
+

L

w

α∑
i=2

1

i
. (16)

The theorem follows by noting that M ≤
∑α

j=1 nj . ⊓⊔
For positive integer n, let the nth harmonic number be denoted by Hn :=∑n

i=1 1/i, and let F : R+ → R+ be a function defined as

F (x) :=
x

k
+

Hk − 1

x
for

√
k − 1 < x ≤

√
k, k = 1, 2, 3, . . . .

Although F (x) is defined in a piece-wise manner, it can be shown that F (x) is
a continuous function, i.e., it is continuous at x =

√
k for k = 1, 2, 3, . . .

In terms of F (x), Theorem 4 can be re-phrased as

rM−1(w,L) > 0 implies M ≤
√
LF (w/

√
L).

Indeed, as α− 1 < w2/L ≤ α, the right hand side of (16) can be written as

√
L
( w√

Lα
+

√
L

w

α∑
i=2

1

i

)
=

√
L
( w√

Lα
+

√
L

w
(Hα − 1)

)
=

√
L · F (w/

√
L).

One can show by calculus that the function F (x) attains global maximum
at x =

√
2, with maximal value F (

√
2) = 3/

√
8. If a UIS(L,M) exists, then

from Theorem 2 we know that rM−1(w,L) is positive for some w, and from
Theorem 4, we have M ≤

√
LF (w/

√
L) ≤

√
L(3/

√
8). We have thus proved the

following

Theorem 5. Lmin(M) ≥ ⌈8M2/9⌉.
Theorem 5 improves upon the previous lower bound 1+M(M − 1)/2 from [10].

The calculations as described in Theorem 3 have been automated by a com-
puter program, and the resulting lower bounds on the period of UI sequences
for M = 2, 3, . . . , 13 are tabulated in the third column in Table 2. The value of
⌈8M2/9⌉ is shown in the second column. We can observe that the lower bounds
obtained by Theorem 3 coincide with those by Theorem 5 very often. In fact,
one can show by a more detailed analysis that the two lower bounds yield the
same value when M is a multiple of 3. In the last column in Table 2, we list
the shortest known period of UI sequences. The known periods in the first five
entries come from the class of shift-invariant sequences. For seven or more users,
CRT and CRTp give the shortest known period.

6 Conclusion

A new construction of UI sequences when the number of users is a prime integer
is devised. The sequence length of the new construction increases asymptotically
like 2M2. Also, a lower bound of 8M2/9 is proved in this paper. Closing the gap
between the upper and lower bound for Lmin(M) is an interesting direction for
future work.



M ⌈8M2/9⌉ Lmin(M) Known period

2 4 4 4 (SIS)

3 8 8 8 (SIS)

4 15 ≥ 15 16 (SIS)

5 23 ≥ 24 32 (SIS)

6 32 ≥ 32 64 (SIS)

7 44 ≥ 44 84 (CRTp)

M ⌈8M2/9⌉ Lmin(M) Known period

8 57 ≥ 60 165 (CRT)

9 72 ≥ 72 187 (CRT)

10 89 ≥ 90 209 (CRT)

11 108 ≥ 108 220 (CRTp)

12 128 ≥ 128 299 (CRT)

13 151 ≥ 152 312 (CRTp)

Table 2. Lower bound on the minimum period of user-irrepressible sequences and peri-
ods of known user-irrepressible sequences. (It can be proved that there is no UIS(15, 4)
by a separate argument and thus Lmin(4) = 16)
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