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Abstract 
Signal-to-noise (SNR) ratio is commonly regarded as a reliable measure of the 
performance of wireless communication systems.  Knowledge of the fundamental 
properties of the feasible SNR region can facilitate the performance optimization of 
multi-user wireless systems.  This paper examines the concavity of the feasible SNR 
region.  In particular, it is shown that for systems with only three users, the feasible 
SNR region is always concave.  As concavity for two-dimensional systems is 
well-known and concavity for four-dimensional systems does not hold in general, this 
result fills in a gap on this issue.  A concavity result for systems with a general 
number of users is also established under certain technical conditions. 
 
Keyword: Power control, Feasible SNR region, Concavity set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2

1. Introduction 
Signal-to-noise ratios are key performance indicators for wireless communication 
systems.  The signal-to-noise ratio (SNR) of a user is defined by dividing the power 
of the received signal by the sum of the power from all noises, including interfering 
transmissions from other users and thermal noises.  These ratios are typically 
analyzed under the assumption that interfering noises form Gaussian processes.  
Although there are limitations of this assumption, as reported in Sunay and McLane 
[1, 2] and Chen and Wong [2], the importance of these ratios as a performance 
measure for wireless systems has never been doubted. 
 
 For a wireless system with N  users, the signal-to-noise ratios form an 
N-dimensional vector. In this paper, all users are assumed to be transmitting with 
strictly positive power; hence all the ratios are strictly positive and the SNR vector is a 

point lying in the positive orthant, { }1( , ) : 0,N N
N ix x x i+ = ∈ > ∀\ … \ .  The 

feasible region defined by the SNR vectors is the focus of this study.  For the case 
where there are only two users, the feasible region can be easily described as the 

region in 2
+\  bounded by the two axes and the curve: 

 {( , / ) : }ax b x x +∈\  (1.1) 
for some positive a and b whose values are dependent on the channel gains.  This 

feasible region is obviously concave in the sense that its complement in 2
+\  is 

convex, so that the line joining any two points in the complement is contained in the 
complement. 
 
 It is natural to ask whether this concavity property of the feasible region holds in 
higher dimensional systems.  This has been a longstanding open question.  Sung [3] 
provided an interesting insight into this problem by showing that the feasible region is 
log-convex.   Subsequent papers dealing with geometric properties of the feasibility 
region include Catrein et. al. [4], Boche and Stańczak [5, 6], Imhof and Mathar [7, 8], 
Stańczak and Boche [9].  In particular, it has been shown in [9] that the concavity 
result does not hold for a general four user wireless system.  The situation for a 
general three user system remains open.   
 
 In this paper, we investigate the concavity of feasible SNR regions. Main results 
include the following:  
1. The feasible SNR region of a general three user system is concave.   
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2. Consider a system with a channel gain matrix that can be represented as a product 
of a diagonal matrix with a symmetric matrix.  If the gain matrix has only one 
eigenvalue strictly greater than 1 and the remaining eigenvalues strictly less than 1, 
the feasible SNR region is concave. 
 
 We will demonstrate by concrete examples that for systems with gain matrices 
not satisfying the stated eigenvalue condition the feasible SNR region is not 
necessarily concave.  In fact, the geometry of a general feasible SNR region can be 
extremely complicated.  For example, given any two points, x and y, on the boundary 

that divides the feasible region and its complement in N
+\ , the line: 

 { : 1,0 , 1}x yα β α β α β+ + = < <  (1.2) 
does not necessarily lie completely outside nor inside the feasible SNR region.  We 
will show by numerical examples that the line can be divided into segments, some of 
which are outside and the remaining ones are inside of the feasible SNR region. 
 
 The main tool used in establishing these results originates from an idea 
proposed in a paper by Weinberger [10] in which he provided a simple proof of a 
theorem of Lax [11].  The essence of this idea lies in the construction of a special 
two-variable characteristic polynomial.  However, beyond this basic contraption, 
there is little relation between the arguments used in [10] and this paper.  
 
 The organization of the rest of the paper is as follows.  Section 2 presents a 
description of the basic model and assumptions.  In Section 3, the two-variable 
polynomial alluded to earlier is introduced and some of its fundamental properties are 
described.  Moreover, a basic concavity result for a general number of users is 
established.  In Section 4, concavity for a general three-dimensional system is 
proven.  Numerical examples are provided in Section 5 and Section 6 offers some 
concluding remarks. 
 
2. Basic Model and Background Information  
The basic model discussed in this paper consists of N  transmitter-receiver pairs, all 

sharing the same radio spectrum.  Let 0ijG ≥  represent the channel gain between 

the j-th transmitter and the i-th receiver.  The N N×  channel gain matrix, G , is 

defined to be ( )ijG .  (For any matrix or vector, M , we use the notation 0≥M  to 

denote that all components of M  are nonnegative, 0>M  to denote that 0M ≥  
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and 0M ≠ , and 0M�  to denote that all the components are M  strictly positive.)  
In practice, 0G� .  However, to establish the results in this paper, it is sufficient to 

assume that the interference matrix, ( )ijZ=Z , defined by 
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 (2.1) 

is primitive [12]. 
 
 Let 1( ,..., ) 0mp p=p �  denote a power vector and 1( ,..., ) 0mη η=η �  a noise 
power vector.  The signal-to-noise ratio for the i-th user, represented by ( )i pΓ , is 
defined by 

 ( ) .ii i
i

ij j i
j i

G p
G p

p
η

≠

Γ =
+∑

 (2.2) 

Let [ ]1( ) ( ), , ( ) T
NΓ p p p= Γ Γ…  represent an N-dimensional column SNR vector.  It 

is easy to check that the SNR vector is a function of Z  and one can  define the 
feasible SNR region in terms of either G  or Z .  More specifically, one can view 

( )Γ p  as a continuous mapping from N
+\  to itself.  For a given interference matrix 

Z , the feasible SNR region, ( )ZF , is defined to be the closure of the image set 

( )N
+Γ \  in N

+\ .   Let ( )S Z  denote the set of limit points lim ( )
c

cΓ p
→∞

 for some 

N
+∈p \ .  ( )S Z  contains elements of the form  

 1

1

, , N

j j Nj j
j j

pp
Z p Z p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑

…  (2.3) 

for some 1( ,..., ) 0Np p � .  
 
 Based on previous works reported in the literature, the structure of a feasible 
SNR region, ( )ZF , can be understood in the following way [3].  For any point z  

in ( )S Z , the open line segment defined by { }: 0 1c c< <z  is in ( )N
+Γ \ , but cz is 
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not in the feasible region if 1c > .  It follows that ( )S Z  is in the boundary set of 
the feasible SNR region.   
 
Definition: An SNR feasible region, ( )ZF , is concave if for any two distinct points, 
ξ  and ψ , on the boundary ( )S Z , the open line 
 { : 1,0 , 1}ξ ψα β α β α β+ + = < <  (2.4) 
is outside of ( )ZF . 
 
 For subsequent discussions, let ( )ρ M  represent the spectral radius of a matrix 
M .  If 1[ , , ]T

N= Γ ΓΓ …  is an SNR vector, let ΓD  denote the corresponding 
diagonal matrix 

 

1

2

0 0
0 0

0 0 N

Γ⎛ ⎞
⎜ ⎟Γ⎜ ⎟
⎜ ⎟
⎜ ⎟

Γ⎝ ⎠

"
"

# # % #
"

. (2.5) 

Under this notation, Γ  is contained in ( )S Z  if and only if there exists a power 
vector, 0p�  such that 
 ΓD Zp p= . (2.6) 
 
3. Basic Analysis 
Consider a fixed interference matrix, Z , with a feasible region ( )ZF .  Let ξ  and 

ψ  be distinct elements on the boundary ( )S Z  and let ξD  and ψD  represent the 

corresponding diagonal matrices.  From (2.6) it follows that 

 ( ) ( ) 1ξ ψD Z D Zρ ρ= = . (3.1) 

For (0,1), 1α β α∈ = −  let θD  be the diagonal matrix corresponding to the point 

 1 ( )
( )ξ ψ

θ ξ ψ
D Z D Z

α β
ρ α β

= +
+

. (3.2) 

It follows from definition that 

 1 ( )
( )θ ξ ψ

ξ ψ

D D D
D Z D Z

α β
ρ α β

= +
+

. (3.3) 

Since the spectral radius of θD Z  is exactly 1, from the Perron-Frobenius 
Theorem, (2.6) has a strictly positive solution, and hence θ  is in ( )S Z .  Due to the 
structure of the feasible region, we conclude that the point ξ ψα β+  lies outside of 
the feasible region if and only if 

  ( ) 1 ( ) ( )ξ ψ ξ ψD Z D Z D Z D Zρ α β αρ βρ+ > = + .        (3.4) 
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 A mathematical tool of central importance in this paper is the following 
two-variable polynomial: 

 ( )( , ) det ( )p x y y x= − + −ξ ψD Z I D Z I  (3.5) 

which was adopted from [10] and was originally used to prove a theorem of Lax in 
regard to concavity of the eigenvalue function.  The real roots of this polynomial are 
elements ( , )x y  in 2\  such that ( , ) 0p x y = .  Some salient features of these real 
roots are summarized in the following lemma. 
 
Lemma 3.1: For any x  there are at most 1N −  real roots.  For any non-negative 
y  there is at least one real root ( , )x y  with 0x> .  In particular, the point (1,0)  
is a root of p  and there is no root of the form ( ,0)x  for 1x> . 

Proof: The coefficient of Ny  in ( , )p x y  is det( )−ξD Z I  which is equal to zero 

since ξ  in ( )S Z .  So the first statement holds.  For any non-negative y , 

 ( ) ( )y y yρ ρ+ > =ξ ψ ξD Z D Z D Z . (3.6) 

The first inequality follows from a well-known property of irreducible matrices, (see 
for example [12].)  There is a real root, ( , )x y , for p  with  

 ( ) ( )( ) 0x y y yρ ρ= − + = + − >ξ ψ ξ ψD Z I D Z D Z D Z  (3.7) 

and there is no other root, ( , )x y′ , with x x′ > .        ■ 
 
 For any non-negative y , let  

 ( )( )m y y yρ= + −ξ ψD Z D Z . (3.8) 

The previous proof shows that ( ( ), )m y y  is a real root of p  and there is no root of 
p , ( , )x y , such that 

 ( )x m y> . (3.9) 
(See Figure 1a for an illustration.) The usefulness of p  in proofing concavity result 
was realized in [10] and is reflected by the following lemma. 
 
Lemma 3.2: Let , 0α β> , then 

 
( ) ( ) ( )
( ) ( ) ( )

if ( / ) 1,

if ( / ) 1.

m

m

ρ α β αρ βρ α β

ρ α β αρ βρ α β

+ < + <

+ > + >

ξ ψ ξ ψ

ξ ψ ξ ψ

D Z D Z D Z D Z

D Z D Z D Z D Z
 (3.10) 
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  Figure 1a: ( ) 1m y >  implies concavity    Figure 1b: ( ) 1m y <  implies convexity 

 

Proof:  Since ( ) ( ) 1ρ ρ= =ξ ψD Z D Z , it follows from (3.8) that for any 0y ≥  

 
( ) ( ) ( )
( ) ( ) ( )

if ( ) 1,
if ( ) 1.

y y m y
m yy y

ρ ρ ρ

ρ ρ ρ

+ < + <
>+ > +

ξ ψ ξ ψ

ξ ψ ξ ψ

D Z D Z D Z D Z

D Z D Z D Z D Z
 (3.11) 

The lemma follows by letting /y α β=  and multiplying both sides of the inequality 
in (3.11) byβ .               ■ 
 
Lemma 3.3: Consider a symmetric S  and a diagonal matrix E  with strictly 
positive diagonal elements.  The matrices S  and ES  have the same number of 
strictly positive (and strictly negative) eigenvalues. 
 
Proof:  Since det 0E ≠ , the matrices ES and 1/2 1/2E SE  have the same 
characteristics equation and hence they have the same eigenvalues.  On the other 
hand, by the Law of Inertia for quadratic forms [13] the number of strictly positive 
eigenvalues for S  and 1/2 1/2E SE  is identical.  Similar result holds for strictly 
negative eigenvalues.              ■ 
 
Theorem 3.4:  Suppose Z  is of the form ES  where E  is a diagonal matrix and 
S  is symmetric.  If Z  is non-singular and has only one strictly positive eigenvalue, 
then for any points ξ  and ψ  in the boundary, ( )S Z , the polynomial in y , 

det( ( ) )y − + −ξ ψD Z I D Z I , has only non-positive real roots.  Moreover, the feasible 

SNR region of Z  is concave. 
 

Proof:  Let 1/2 1/2 1/2 1/2= ψ ψY D E SE D .  By the Law of Inertia for quadratic forms, the 

( ) 1m y >  ( ) 1m y <

x ε=x ε=
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matrices S , 1/2 1/2E SE , and Y  have the same number of strictly positive (and 
strictly negative) eigenvalues.  Since 1/2 1/2E SE  and =ES Z  have the same 
eigenvalues, it follows that Y  has one strictly positive eigenvalue and 1N −  

strictly negative eigenvalues.  Let 1−= ξ ψD D D  then 

 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1 1

( ) det( ( ) )

det( ( ) )

det( ( ) ) det( ( ) )det .

xq y y x

y x

y x y x− −

= − + −

= − + −

= − + − = − + −

ξ ψ

ψ ψ ψ ψ

D Z I D Z I

DD E SE D I D E SE D I

DY I Y I D Y I Y Y

 (3.12) 

On the other hand, since 1/2 1/2 1/2 1/2= ψ ψY D E SE D  and =ψ ψD ES D Z  have the same 

set of eigenvalues, 1 is an eigenvalue of Y .  If 1ε< , 1ε −−I Y  is a positive 
definite matrix.  By the well-known result on positive definite pencil of symmetric 
matrices, there exists a real congruent transformation that puts 1ε −−I Y  and 

1−−D Y  into diagonal form simultaneously.  In particular, the diagonal form of 
1ε −−I Y  can be assumed to the identity matrix.  By the Law of Inertia, the number 

of strictly negative roots of ( )q yε  is equal to the number of strictly positive 

eigenvalues of 1−−D Y , and in turn by Lemma 3.3, is equal to the number of strictly 
positive eigenvalues of 1 1− −−I D Y , or equivalently 1/2 1 1/2− − −−I D Y D .  Note that: 

 1/2 1 1/2 1/2 1 1/2− − − − − −= ξ ξD Y D D Y D . (3.13) 

So 1/2 1 1/2− − −D Y D  just like Y  has one strictly positive eigenvalue and 1N −  

strictly negative eigenvalues.  Moreover, 1/2 1 1/2− − −
ξ ξD Y D  and 1 1− −

ξY D  have the 

same set of eigenvalues which include the value 1 11 ( ) 1/ ( )ρ ρ− −= =ξ ξZ D D Z .  Thus, 

1/2 1 1/2− − −−I D Y D  has 1N −  strictly positive eigenvalue and a single eigenvalue at 0.  
It follows that ( )q yε  has 1N −  strictly negative roots and a single root at infinity.  
Denote the finite roots as 
 1 1( ) ( ) 0Nr rε ε−≤ ≤ <…  (3.14) 
As ε  tends to 1, by continuity of roots to the characteristic equation, we conclude 
that there are no strictly positive roots for 1( )q y . 
 
 Now consider the function ( )m y  defined in (3.8). Clearly, (0) 1m = , which 
corresponds to the fact that (1,0)  is a real root for 1( )q y . For small enough positive 
y , ( )m y  cannot be less than 1, due to the fact that ( )q yε  cannot have a strictly 
positive root if ε  is slightly less than 1.  (See Figures 1b for an illustration.)  Thus, 

( ) 1m y >  holds for all positive y  in a small enough neighborhood around 0. As y  
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increases, the continuous curve ( ( ), )m y y  cannot cross the line 1x =  as 1( )q y  has 
no strictly positive roots.  By Lemma 3.2 and using the condition defined in (3.4), it 
follows that the feasible region is concave.         ■ 
 
 In Section 5 we will show by numerical examples that if Z  has more than one 
positive eigenvalue, the feasible SNR region is not concave even if Z  is symmetric.  

 Since ξD Z  is primitive, it has a simple root at 1, so there exists a non-singular 

matrix, Q , such that 

 1 1

1 0

1 T
N

N

− −

−

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
ξ

0
D Z Q Q

0 Λ
, (3.15) 

where 0Λ  is an ( 1) ( 1)N N− × −  sub-matrix and 1N−0  and 1
T
N−0  are ( 1) 1N − ×  

and 1 ( 1)N× −  zero matrices respectively.  It follows from Perron-Frobenious 
Theorem that 0 1det( ) 0N−− ≠Λ I  and 1

0 1sgn det( ) ( 1)N
N

−
−− = −Λ I .  If we write 

 1
0

0
[ , ], ,

T
−

⎡ ⎤
⎢ ⎥= = ⎢ ⎥⎣ ⎦

q
Q p R Q

S
 (3.16) 

Then it follows directly from (3.15) that: 

 , , 1.T T T= = =ξ ξD Zp p q D Z q q p  (3.17) 

Lemma 3.5: Under the previous notation, 

 
( )

0 0

0 0 1 1 0 0 0

( , ) det ( )

det .
( )

T T

N N

p x y y x

x
y x− −

= − + −

⎡ ⎤−⎢ ⎥= ⎢ ⎥− − +⎣ ⎦

ξ ψD Z I D Z I

q Dp q DQ Λ
S Dp Λ I I S DQ Λ

 (3.18) 

This can also be verified by direct computation and details are omitted here. 
 
Proposition 3.6: Consider a general interference matrix, Z . If the polynomial in y  

 1
1 1 1( ) det( ( ) ) ...N

nq y y c y c y−
−= − + − = + +ξ ψD Z I D Z I  (3.19) 

has only non-positive roots, then for all non-negative y , the property ( ) 1m y >  
holds if and only if  
 1

1( 1) 0N
Nc −
− − > . (3.20) 

Moreover, (3.20) holds if and only if  
 1

1( 1) 0Nc −− > . (3.21) 
Proof: Let ε  be an arbitrarily small but fixed positive number.  Let 

 , .T Tx xε ε− += − = +q Dp q Dp  (3.22) 
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If x  is equal to x−  or x+ , then for all large enough y  the dominant term in the 
determinant in (3.18) is 

 1
0 1( )det( )T N

Nx y −
−− −q Dp Λ I . (3.23) 

Under this condition, the sign of ( , )p x y  is equal to the sign of the expression in 
(3.23).  It follows that ( , )p x y  changes sign as x  varies from x−  to x+  for all 
large enough y , hence, ( , )p x y  has a real root between x−  and x+ . By continuity 
of the roots, as ε  tends to zero, there is root branch that tends to ( , )T ∞q Dp .  On 
the other hand, since 

 1( , ) det ( ) xp x y y
y y

⎛ ⎞⎟⎜= − + − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠ξ ψD Z I D Z I , (3.24) 

for a fixed, large enough, positive y , there is a one-to-one relation between x  roots 

of ( , )p x y  with strictly negative real parts and eigenvalues of −ξD Z I  with strictly 

negative real parts.  Since there are 1N −  such roots according to Perron-Frobenius 
Theorem, one can conclude that for large enough, positive y , ( , )p x y  has one and 
only one strictly positive real root in x  and the root is in a neighborhood of 

Tx = q Dp .  Moreover, the neighborhood can be made arbitrarily small as y  
approaches infinity.  Thus for large enough positive y , ( ) 1m y >  if and only if 

1T >q Dp .  By proposition assumption, ( ) 1m y >  holds all positive y  if and only if 
it holds for some large enough positive y .  
 On the other hand, from (3.18) and (3.19) it follows that 
 1 0 1( 1)det( )T

N Nc − −= − −q Dp Λ I . (3.25) 
Therefore for positive y , ( ) 1m y >  if and only if 1

1( 1) 0N
Nc −
− − > .  To prove the 

last statement, note that 

 

( )

1 1

1
1 1

1( ) (1/ ) det ( )

/ ... / .

N N

N N
n

q y y q y y
y

y c y c y −
−

⎛ ⎞⎟⎜= = − + − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

= + +

ξ ψD Z I D Z I
 (3.26) 

Hence 1c  is the coefficient of the leading term of the following polynomial in z , 

 ( )det ( )z− + −ξ ψD Z I D Z I . (3.27) 

One can repeat previous arguments by reversing the role of ξ  and ψ .  In particular, 
one can define 

 ( )( )n z z zρ= + −ξ ψD Z D Z  (3.28) 

as in (3.8).  It follows that ( ) 1m y >  for all positive y  if and only if ( ) 1n z >  for 
positive z .  The last statement of the proposition follows by applying previous 
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arguments using ( )n z  instead of ( )m y .         ■ 
4. A Concavity Theorem for Three-Dimensional Systems 
When 2N = , the feasible SNR region is concave, that is, the infeasible region in 

2
+\  is convex [5, 6].  For 4N ≥ , the concavity result has been shown in [9] to be 

invalid in general.  In this paper, concavity of the feasible SNR region is established 
for all three-dimensional systems .  Consider first of all the case that Z  is 
symmetric.  Since Z  has all diagonal elements equal to 0 this implies the sum of its 
eigenvalues is 0.  Other than the dominant eigenvalue, the other two eigenvalues 
must be strictly negative, since each one must be strictly less than the dominant 
eigenvalue.  Theorem 3.4 then implies that for all three-dimensional systems with 
symmetric normalized interference matrix the feasible SNR region is concave. 
  
Theorem 4.1: The feasible SNR region of a three-dimensional system is concave. 
 Before proving this result, we need to establish the following lemma for three- 
dimensional systems. 
 
Lemma 4.2: For any three-dimensional interference matrix, Z , the polynomial in y  

 ( ) det( ( ) )q y y= − + −ξ ψD Z I D Z I  (4.1) 

has a strictly negative root in addition to the root at 0. 
Proof: Let 

 
1

2

3

0 0 0
0 , , 0 0

0 0 0

a b d
c d d
e f d

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟= = =⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
ξ ψ ξD Z D DD D . (4.2) 

From previous remarks, it is clear that det 0>ξD Z . 
 Note that the id ’s are strictly positive. If one of the id ’s is equal to 1, then one 
can show by direct verification that 1y =−  is a root to ( )q y , proving the lemma.  
On the other hand, results from Perron-Frobenius theory implies it is impossible that 
all id ’s are less than 1.  Thus, without lost of generality, we can assume that (after 
reversing the role of ξ  and ψ  if necessary) 
 1 2 31d d d≤ < < . (4.3) 
Then, 

 1 2 3( 1) det( ) ( 1)( 1)( 1)det 0q d d d− = − = − − − >ψ ξ ξD Z D Z D Z . (4.4) 

On the other hand, 

 3
2 2 2 1 2 3 2( ) ( 1) ( 1)( )( ) 0q d d d d d d d be− = − − − − − < . (4.5) 
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So ( )q y  has a root in the interval 2[ 1, ]d− − .        ■ 
 
Proof of Theorem 4.1: Construct a continuous one-parameter family of matrices by, 
 T

r r= +Z Z Z . (4.6) 
Define a family of characteristic polynomials: 

 2( ) det( ( / ( ) ) / ( ) )r r r r r r rq y y a y b yρ ρ= − + − = +ξ ξ ψ ψD Z D Z I D Z D Z I . (4.7) 

The coefficient functions, ra  and rb , are continuous.  From the proof of Lemma 
4.2, one can see that these functions cannot vanish since any ( )rq y  has a root at zero 
and a strictly negative root.  Thus, 
 0 1sgn( ) sgn( ) 0a a= >  (4.8) 
The last inequality followings from Proposition 3.6 and the fact that the feasible 
region of T+Z Z  is concave.  So the feasible region for Z  is concave also.  ■ 
 

5. Numerical Examples 

In this section, we present some numerical examples to illustrate the results reported 
previously.  First of all, we note a four-dimensional example which satisfies the 
eigenvalue condition stated in Theorem 3.4.  Consider the following system: 

 

0 0.1 0.1 0.1
0.1 0 0.2 0.1ˆ .
0.1 0.2 0 0.5
0.1 0.1 0.5 0

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (5.1) 

The eigenvalues of Ẑ  are (0.6235, 0.0126, 0.1000, 0.5110)− − − .  If 

1 2

1 0 0 0 4 0 0 0
0 2 0 0 0 3 0 0

, ,
0 0 3 0 0 0 2 0
0 0 0 4 0 0 0 1

E E

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (5.2) 

and 1 1 1
ˆ/ ( )D E E Zρ=  and 2 2 2

ˆ/ ( )D E E Zρ= , then Figure 2a show the roots of the 

polynomial 

 1 2 4 1 4
ˆ ˆ( , ) det( ( ) )p x y y x= − + −D Z I D Z I . (5.3) 
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Figure 2a: A four-dimensional symmetric example showing concavity property 

 
 If the we redefine 1E  and 2E  so that  

 1 2

.1 0 0 0 20 0 0 0
0 3 0 0 0 .1 0 0

, ,
0 0 3 0 0 0 2 0
0 0 0 1 0 0 0 4

E E

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (5.4) 

then the real roots of 1p  are shown in Figure 2b. 
 

 
Figure 2b: A four-dimensional symmetric example showing concavity property 

 



 14

 We also consider one case where Z  is a non-symmetric matrix with only one 
eigenvalue with strictly positive real part.  Let 

 

0 0.11 0.3 0.3
0.2 0 0.2 0.1ˆ .
0.1 0.2 0 0.7
0.1 0.2 0.3 0

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (5.1) 

The eigenvalues are (0.7069, 0.1345 0.1086 , 0.1345 0.1086 , 0.4379)i i− + − − − .  For 

1E  and 2E  defined as in (5.4), the real roots of 1p  are shown in Figure 3. 

 

Figure 3: A four-dimensional non-symmetric example showing concavity property 

 The assumption of a single strictly positive eigenvalue is a key assumption for 

concavity.  Consider the following symmetric case with  

 

0 0.2 0.01 0.02
0.2 0 0.2 0.01ˆ .
0.01 0.2 0 0.3
0.02 0.01 0.3 0

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (5.2) 

The eigenvalues are (0.3952,0.1363, 0.1534, 0.3781)− − .  Define 1E  and 2E  as 
in (5.2), then the real roots of 1p  are shown in Figure 4a. 
  
 When one sets 

 1 2

.1 0 0 0 10 0 0 0
0 10 0 0 0 .1 0 0

, ,
0 0 .1 0 0 0 10 0
0 0 0 10 0 0 0 .1

E E

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (5.3) 
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then the line segment joining the corresponding points on the boundary of the feasible 
region exhibits a concavity property as shown in Figure 4b 
 In fact, it is noted that the concavity property can be made very drastic.  If we 
denote the feasible points as ξ  and ψ , with 

 
[0.227, 22.729,0.227, 22.729] ,
[23.236,0.232, 23.236,0.232] ,

T

T

=

=

ξ
ψ

 (5.4) 

then the feasible point in the direction defined by the midpoint of the line joining ξ  
and ψ  is: 
 [1.011,1.011,1.011,1.011]T . (5.5) 
The SNR of some of the users are reduced by a factor of around 23. 

 

Figure 4a: A four-dimensional symmetric example showing concavity does not hold 
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Figure 4b: Same example showing concavity property 

  
 Finally, we note with one example that the geometry of the feasible SNR region 
can be very complex.  Consider a five-dimensional system with 

 

1 2

0 0.8 0.4 0.008 0.08
0.08 0 0.8 0.004 0.008

ˆ ,0.004 0.08 0 0.08 0.04
0.08 0.004 0.08 0 0.08
0.16 0.008 0.4 0.08 0

0.01 0 0 0 0 5 0 0 0 0
0 0.01 0 0 0 0 5 0 0 0

,0 0 3 0 0 0 0 0.03 0 0
0 0 0 5 0 0 0 0 0.01 0
0 0 0 0 5 0 0 0 0 0.01

Z

E E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣

.

⎤
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 (5.6) 

Then for 1 1 1
ˆ/ ( )D E E Zρ=  and 2 2 2

ˆ/ ( )D E E Zρ=  the real roots of 

 2 2 5 1 5
ˆ ˆ( , ) det( ( ) )p x y y x= − + −D Z I D Z I  (5.7) 

is shown in Figure 5.  On close examination, one can see the line joining the 
corresponding feasible points on the boundary is divided into three segments.  The 
middle segment is outside the feasible region while the remaining two segments are 
inside the feasible region.  So neither concavity nor convexity holds even for the 
lining joining these two points. 
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Figure 5: An example showing the complexity of the feasible region geometry 

 

6. Conclusion 

In this paper, concavity results of the feasible signal-to-noise regions are established.  
The results shed light on the complexity of the geometric properties of these feasible 
regions.  There are several possible directions for future extension.  In particular, in 
Theorem 3.4, the symmetry and the non-singular assumptions may not be necessary.    
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