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Abstract— In this paper, an estimate-inference-feedback con-
trol methodology is proposed for affine systems involving
two agents executing cooperative control based on individual
choices. No explicit communication channel exists between the
two agents. The system state is estimated independently with
an unbiased minimum variance (UMV) estimator by each
agent and knowledge about their choice actions are updated
in discrete time steps. Based on the estimated system state and
probability distributions of the choices, sub-optimal controllers
are designed iteratively. Analysis and simulation results show
that the proposed control law is robust to disturbances and
more energy-efficient than strategies ignoring choice informa-
tion.

I. INTRODUCTION

Cooperative decision making involving a group of par-
ticipants is an interesting and thriving topic for researchers
from various disciplines. Typically, the studied problem is
formulated as a team task with some uncertainty elements,
which cannot be accomplished by a single controlling par-
ticipant, also known as agent. Thus, each agent has to take
into consideration of one’s own decision along with the
information obtained on the other agents’ decisions. The
objective is to find strategies for each agent such that a given
objective goal is achieved. The information structure, that is,
“who knows what and when do they know it”, plays a crucial
role in the design problem of strategies, or equivalently, the
problem of “what should they do with that information”.
These problems have long been considered in the literatures,
for example [1]–[6], [16] to name a few.

One scenario falling into the category of team decision
problem is the choice-based actions of multiple agents,
where agents cooperate to realize a target selected from
a common target list according to the joint but indepen-
dent choices of the agents. Application examples include
controlling the position of a wireless sensor according to
the monitoring regions of interest to the non-communicating
users, replenishing the stock level of a warehouse according
to the demand levels of multiple retailers, determining to
rendezvous or not based on people’s moods (refer to [10]
for the detailed description of the rendezvous problem),
among others. This line of investigation was first drawn into
attention in [7] and extended in successive literatures [8]–
[11]. In [7] and [8], the authors investigated the interplay
of control and communication and formally introduced the
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concept of control communication complexity and control
energy complexity of implementing such tasks. In [9], this
problem was further connected with the standard parts opti-
mal control problem as suggested by Brockett in [12]. The
distributed realization of a target matrix was extended to
bilinear input-output mapping systems in [10]. In general,
it is possible for the agents to lower the control cost by
signaling information of their choices to each other. Two
bounding extreme cases were analyzed in [10], one without
any communication and the other with full communication,
in order to determine inherent value of a communication bit.
These research works lead to new perspectives on distributed
control and at the same time raise numerous challenging
questions, such as the feasibility of the set of targets, the
optimality of control protocols etc.

In this paper, we study the distributed action affine systems
in details, noting that the rendezvous problem [10] and many
agent related problems [14]–[16] can be described in terms of
affine models. Unlike previous works [7]–[10] which focus
on the complexity analysis, the design of distributed control
schemes is considered in this paper. Even if one could de-
sign open-loop controls for such problems for deterministic
systems as in [11], these solutions usually do not work well
under state uncertainties. Therefore, our focus in this paper is
on feedback schemes that allow control decisions to be based
on information obtained through partial observations. Due to
the lack knowledge of each other’s choice and hence control
input, a special type of Kalman filter is introduced to handle
uncertainties in the system state and observations. Mutual on-
line inference of each other’s selected choice is embedded in
the distributed feedback control law. The resultant algorithm
improves overall performance accuracy while lowering the
control cost for target realization without requiring explicit
communication between agents on their selected choices.

This paper is organized as follows. In Section II, we pro-
vide the description of the basic model and the main problem
to be solved. In Section III, the UMV state estimator and
the choice information inference procedure are presented.
In Section IV, both open-loop control and estimate-infer-
feedback control (EIFC) algorithms are presented. Simula-
tion results in Section V provide partial confirmation of our
claims along with comparison between different methods.
Conclusions and future work are provided in Section VI.

II. PROBLEM STATEMENT

While [11] investigated the controller design methodology
for deterministic continuous-time systems, in the present pa-
per we focus on controlled stochastic systems by two-agent,
Alice and Bob. Suppose the choices of Alice are labeled by a



finite set A = {1,2, . . . ,NA}, and B = {1,2, . . . ,NB} is used
to label Bob’s choices. When i∈A is selected by Alice and
j ∈B is selected by Bob, the discrete-time model of affine
systems can be described by

xi j
k+1 = Axi j

k +Bui
k +Cv j

k +ξk, (1)

zA,i j
k = FAxi j

k +η
A
k , (2)

zB,i j
k = FBxi j

k +η
B
k , (3)

where xi j
k ∈ Rn and zi j

k ∈ Rp (in the sequel, we omit the
superscripts i j where there is no ambiguity) are respectively
the system state and the agents’ measurements of the state
at time k, k = 0, . . . ,N− 1. x0 is assumed a random vector
with mean x̂0 and variance Q0. The control input of Alice
corresponding to her choice i is represented by ui

k ∈ Rmu

and the control input of Bob corresponding to his choice
j by v j

k ∈ Rmv . The noises ξ ∈ Rn and η ∈ Rp are white
Gaussian with covariances E{ξkξ T

l } = Qkδkl , E{ηkηT
l } =

Rkδkl , E{ξkηT
l }= 0, and are uncorrelated with xk.

Both agents select their choices at initial time and the
choices remain unchanged. At terminal time, the target state
to be realized is represented by Hi j when Alice selects choice
i and Bob choice j. Hence, we can compactly summarize the
targets via a matrix H which is known as the target matrix.
The target matrix is said to be compatible if for any indices
i, i′ ∈A , and j, j′ ∈B, its entries satisfy

Hi j−Hi′ j = Hi j′ −Hi′ j′ , (4)

otherwise, it is called incompatible. In this paper, we only
consider compatible targets, further discussions on how to
realize a incompatible target matrix can be found in [11] for
multi-agent affine systems.

It is assumed that the entire choice set of Alice A and
the corresponding control inputs are known to Bob, but the
choice she makes at the initial time is not directly disclosed
to him. Similar assumption applies to Bob’s choice decision.
Therefore, the joint state maneuvering problem (or standard
parts problem stated in [9]) is distributed and in general
may require the agents to gain at least partial knowledge
of each other’s choice for final solution. For affine systems,
the exceptional cases where no direct communication on the
selected choices is required for solution are exactly those
with compatible target matrices. In [11], one can find solution
to the design problem of deriving optimal distributed control
inputs ui, v j for all i ∈A and j ∈B such that all targets in
a given compatible matrix H can be achieved when chosen
by the agents, subject to the cost functional

Jo(κ) = E{
N−1

∑
k=κ

[
1

NA

NA

∑
i=1

(ui
k)

T ui
k +

1
NB

NB

∑
j=1

(v j
k)

T v j
k]}. (5)

Note that this cost functional highlights the fact that the
control cost is averaged over all possible event outcomes
when different combinations of choice actions are taken. If
the particular choice pair (i, j) can be made known to both
agents, then the above cost function will be reduced to a

centralized one

Jc(κ) = E{
N−1

∑
k=κ

[(ui
k)

T ui
k +(v j

k)
T v j

k]},

which requires less control cost. This motivates us to solve
the problem by allowing the agents to iteratively estimate
each other’s choice while solving a series of related opti-
mization problems by replacing the initial choice estimates
in (5) with the latest choice estimates.

The following technical assumptions are required for our
proposed solution approach.

Assumption 1: For the system (1)-(3), we assume that:
1) A is nonsingular.
2) The system is controllable by each individual agent,

i.e., (A,B) and (A,C) are controllable pairs.
3) The system is observable by each individual agent, i.e.,

(A,FA) and (A,FB) are observable pairs.
Assumption 2: The two agents have analogous input dy-

namics, i.e., C= γB, γ ∈R,γ 6= 0, and the same measurement
zk, i.e. zA

k = zB
k ≡ zk = Fxk +ηk.

Remark 1: The first part of the assumption 2 arises natu-
rally from scenarios where agents are peers in the system
[14]; heterogeneous cases [15] are not considered in this
paper. The latter part of the assumption is necessitated by
our restriction that there is no communication among agents,
unlike traditional models which assume information flows
either all-to-all or among neighboring agents ([16], [17]).
This information structure can substantially mitigate the
difficulties introduced by the noise η , so that we can concen-
trate on the uncertainties caused by the distributed choices.
Scenarios in which this assumption holds include those cases
where agents share data from a common observer.

III. ESTIMATION-BASED CHOICE DISCRIMINATION

In a choice-based system, the target matrix is assumed to
be known to both agents. If the entries Hi j are distinct, it is
possible to develop estimators for the agents to accurately
determine the choice selected by the other agent. As a
consequence, although no explicit communication is allowed
the system dynamic can convey enough information to the
agents even under state and observation noises.

In this section, we present a two-stage choice deter-
mination procedure. In the first stage of a time interval
[k,k+1], agents estimate the state of the system separately.
In the second stage, each agent makes an inference on the
other agent’s choice based on the estimated state. These
procedures are called the estimate and infer approach which
has similar flavor with the communication phase of a two-
phase protocols depicted in [10], in which partial information
is permitted to be shared with negligible cost.

A. State Estimators

Conventionally, with multiple agents contributing to a
common dynamical platform, inputs from the other agents
can be viewed as unknown exogenous inputs from the
viewpoint of a particular observer. As a result, the Kitanidis’
estimator [18] [19] can be applied to estimate the system



state. This works because the Kitanidis’ estimator is a type of
augmented state Kalman filter that offers unbiased minimum
variance (UMV) state estimation by bypassing the effect
of the unknown input. In this subsection, we show that a
feasible solution can be obtained by requiring the agents
to use this type of estimators provided that the following
assumption is satisfied.

Assumption 3: ([18], [19]) rankFB = rankB = mu = mv.
Remark 2: This assumption requires p ≥ mu, but is not

limiting in engineering applications as discussed in [18]. To
give an example, this assumption as well as Assumption 1
can be both satisfied for integrators which are used frequently
as point models in the multi-agent literatures [14]. Another
claim is that this estimator is not optimal in the sense of
mean square error for our problem, since partial information
about each other’s control input is available for both agents.

Alice’s state estimate: From the viewpoint of Alice,
suppose she selects component i ∈A , the UMV estimation
of xk is given by [18]:

x̂i
k|k−1 = Ax̂i

k−1|k−1 +Bui
k−1 (6)

x̂i
k|k = x̂i

k|k−1 +LA
k (zk−Fx̂i

k|k−1) (7)

LA
k = Kk +(I−KkF)C[CT FT (FP̂kFT

+Rk)
−1FC]−1CT FT (FP̂kFT +Rk)

−1 (8)

Kk = P̂kFT (FP̂kFT +Rk)
−1 (9)

P̂k = ATk−1AT +Qk−1 (10)

Tk = (I−LA
k F)P̂k(I−LA

k F)T +LA
k Rk(LA

k )
T . (11)

This estimator satisfies E{xk− x̂i
k|k}= 0, E{(xk− x̂i

k|k)(xk−
x̂i

k|k)
T}= Tk, and (LA

k F− I)C = 0.
Bob’s state estimate: On the side of Bob, if j ∈ B

is chosen, the formulas are analogous except the a priori
estimation x̂k|k−1 and the gain LB

k of the UMV estimator
should be re-formulated as

x̂ j
k|k−1 = Ax̂ j

k−1|k−1 +Cv j
k−1, (12)

LB
k = Kk +(I−KkF)B[BT FT (FP̂kFT

+Rk)
−1FB]−1BT FT (FP̂kFT +Rk)

−1.
(13)

It follows that the two estimators satisfy the following
property:

Lemma 1: Under Assumption 2, the two agents, Alice and
Bob, have an identical UMV estimate x̂k|k of the system state
xk (with the superscript i j omitted) if x̂i

0 = x̂ j
0.

Proof: Suppose that x̂i
k−1|k−1 = x̂ j

k−1|k−1 ≡ x̂k−1|k−1.
Then

x̂i
k|k− x̂ j

k|k

=(I−LA
k F)(Ax̂k−1|k−1 +Bui

k−1)+LA
k zk

− [(I−LB
k F)(Ax̂k−1|k−1 +Cv j

k−1)+LB
k zk]

=(LA
k −LB

k )(zk−FAx̂k−1|k−1)

+(I−LA
k F)Bui

k−1− (I−LB
k F)Cv j

k−1.

Noting that C = γB in Assumption 2, it follows from (8) and
(13) that LA

k = LB
k ≡ Lk. Also, (I−LA

k F)B = (I−LB
k F)B =

0, and (I−LB
k F)C = (I−LA

k F)C = 0 out of the unbiased
property of the estimators. It is now clear that x̂i

k|k = x̂ j
k|k ≡

x̂k|k.
In the sequel, we use x̂k|k to denote the common state

estimation and Lk to denote the common estimator gain
used by both agents at step 0 ≤ k ≤ N. Denote by Xk ,
{x̂0, x̂1|1, . . . , x̂k|k} the sequence of estimation up to time k.
It can be shown that x̂k|k is a Gaussian random variable with
mean

x̄i j
k|k , E{x̂k|k|Xk−1}= Ax̂k−1|k−1 +Bui

k−1 +Cv j
k−1, (14)

and variance

P̄k , var{x̂k|k|Xk−1}= Lk(FP̂kFT +Rk)LT
k . (15)

B. Choice Inference

Once the system state is estimated, the agents can use
the information to estimate the choice selected by the other
agents. Before we explain how this can be done, we need to
introduce more notation: denote by α l when Alice’s choice
is l ∈A , that is, α = l, and by β m when β = m ∈B.

Alice’s inference: Suppose the choice of Alice is i. Then,
for all m ∈B the probability density function (PDF) of x̂k|k
can be computed by

p(x̂k|k|β m,α i,Xk−1)

=
1

(2π)
r
2 (det∗ P̄k)

1
2

exp{−1
2
(x̂k|k− x̄im

k|k)
T P̄+

k (x̂k|k− x̄im
k|k)}.

(16)

where r = rankP, det∗M and M+ are respectively the
pseudo-determinant and pseudo-inverse of a singular matrix
M. Given that at the (k− 1)-th time step the probability
P(β m|α i,Xk−1) of hypothesis β m is known, this probability
can be updated at the k-th step by using all the above newly
calculated PDFs p(x̂k|k|β m,α i,Xk−1), m = 1, . . . ,NB:

P(β m|α i,Xk) =
p(β m, x̂k|k|α i,Xk−1)

p(x̂k|k|α i,Xk−1)

=
p(x̂k|k|β m,α i,Xk−1)P(β m|α i,Xk−1)

∑
NB
m=1 p(x̂k|k|β m,α i,Xk−1)P(β m|α i,Xk−1)

.

(17)

Bob’s inference: Assume j is selected by Bob, and then
the likelihood of x̂k|k hypothesized on Alice’s action α l , l =
1, . . . ,NA is given by

p(x̂k|k|α l ,β j,Xk−1)

=
1

(2π)
r
2 (det∗ P̄k)

1
2

exp{−1
2
(x̂k|k− x̄l j

k|k)
T P̄+

k (x̂k|k− x̄l j
k|k)},

(18)

and, the probability of hypothesis α l at the k-th step is
updated by Bayes’ rule

P(α l |β j,Xk)

=
p(x̂k|k|α l ,β j,Xk−1)P(α l |β j,Xk−1)

∑
NA
l=1 p(x̂k|k|α l ,β j,Xk−1)P(α l |β j,Xk−1)

.
(19)



Remark 3: Let (i, j) represents the actual choice pair
selected. For a properly designed algorithm, P(β j|α i,Xk)
will gradually dominate P(β m|α i,Xk) for all m 6= j and
converge to 1 eventually after a number of observations. So
is the case for P(α i|β j,Xk) which will gradually dominate
P(α l |β j,Xk) for all l 6= i.

To start the above estimate and infer procedures, all the
probabilities of an agent’s choices can be assumed equal
at the initial time, i.e., P(α l |β j, x̂0) = 1/NA, ∀l ∈ A and
P(β m|α i, x̂0) = 1/NB, ∀m ∈B. Also, both agents should be
informed of a common initial state x0.

IV. CONTROLLER DESIGN

A. Optimal Open-loop Control

Denote pi as the probability of Alice’s choice α i; similarly,
denote q j as the probability of Bob’s choice β j. In [11], the
deterministic model containing no state or observation noise
was investigated under the assumption that the choices of
the agents are uniformly distributed, i.e. pi = 1/NA for all
i ∈ A , and q j = 1/NB for all j ∈ B. Open-loop controls
based on the initial state xκ and a target matrix H that
minimize a deterministic analogue of the cost functional (5)
were derived. As an extension, for stochastic systems with
an optimal state estimation x̂κ and arbitrary given choice
distributions {pi : i = 1,2, . . . ,NA}, {q j : j = 1,2, . . . ,NB},
open-loop controls that minimize the cost functional

Jo(κ) = E{
N−1

∑
k=κ

[
NA

∑
i=1

pi(ui
k)

T ui
k +

NB

∑
j=1

q j(v j
k)

T v j
k]}, (20)

can be found following the separation principle (cf.[20]).
Proposition 1: Considering the system (1) with optimal

initial state estimation x̂κ , the optimal open-loop control in-
puts minimizing (20) subject to a compatible target matrix H
are given as follows: for i = 1,2, . . . ,NA and j = 1,2, . . . ,NB,

ûi
k =BT (AT )N−1−k(GB +GC)

−1du,i
κ ,

v̂ j
k =CT (AT )N−1−k(GB +GC)

−1dv, j
κ ,

where

du,i
κ =−AN x̂κ +(I+GCG−1

B )Hi1−H11

+
NB

∑
m=1

qmH1m−GCG−1
B

NA

∑
l=1

plHl1,

dv, j
κ =−AN x̂κ +(I+GBG−1

C )H1 j−H11

+
NA

∑
l=1

plHl1−GBG−1
C

NB

∑
m=1

qmH1m,

GB =
N−1−κ

∑
k=0

AkBBT (AT )k, GC =
N−1−κ

∑
k=0

AkCCT (AT )k.

The proof is similar to that for deterministic systems in
[11] thus is omitted.

This open-loop control result provides the basic step of
the new feedback control algorithm proposed in this paper,
which aims to handle the uncertainties created by the state
and observation noises.

B. Feedback Control

In conventional single-choice linear stochastic systems,
feedback controllers can be designed from classical LQG op-
timal control theory [20]. Unfortunately, this method does not
apply to systems with distributed choices. An alternate way
is to use closed-loop forms of minimum energy control [21]
by replacing x̂κ in the open-loop control law in Proposition 1
with x̂k|k for k = κ, . . . ,N−1. This yields a distributed feed-
back control law that relies only on the observed information
z. However, this method, which is referred to as the estimate-
feedback control (EFC) approach, requires high control cost
if the choice information is not dynamically updated as the
system approaches the terminal time. This is because we have
to solve essentially a series of optimization problems with
the cost functionals, Jo(0),Jo(1), . . . ,Jo(N− 1) of the form
(20) which are defined over shorter and shorter execution
time.

To alleviate this undesirable situation, feedback controls
need to contain information about the agents’ selected
choices, that is, we need to minimize a series of new cost
functionals, J(0),J(1), . . . ,J(N−1) of the form

J(κ) = E{
N−1

∑
k=κ

[
NA

∑
i=1

pi
κ(u

i
k)

T ui
k +

NB

∑
j=1

q j
κ(v

j
k)

T v j
k]}, (21)

where pi
κ can be derived from Bob’s estimate of Alice’s

choice α i at time κ; similarly, q j
κ is Alice’s estimate of

Bob’s choice β j. It is noticed that for our basic step as in
Proposition 1 to work, both pi

k and q j
k should be known to

both agents.
This requirement prevents the probabilities P(α i|β m,Xk)

and P(β j|α l ,Xk) derived in section III-B from being used
directly in the controllers, since they are conditioned on one
agent’s private choice which is unknown to another agent.
Instead, the agents need to compromise by using an averaged
value, i.e., for all i ∈ A , j ∈B, and k = 0, they use pi

0 =

1/NA, and q j
0 = 1/NB, and for k = 1, . . . ,N−1, they apply

pi
k =

NB

∑
m=1

P(α i|β m,Xk)qm
k−1, (22)

q j
k =

NA

∑
l=1

P(β j|α l ,Xk)pl
k−1. (23)

Now, in consideration of Assumption 1 to Assumption 3,
the feedback control law utilizing x̂k|k can be described by:
For i = 1,2, . . . ,NA and j = 1,2, . . . ,NB,

ûi
k =−Ku

k(A
N−kx̂k|k−hu,i

k ), (24)

v̂ j
k =−Kv

k(A
N−kx̂k|k−hv, j

k ), (25)

where x̂k|k is the UMV estimate of xk,

Ku
k =

1
1+ γ2 BT (AT )N−1−kG−1

k , (26)

Kv
k =

1
1+ γ2 CT (AT )N−1−kG−1

k , (27)



Gk =
N−1−k

∑
r=0

ArBBT (AT )r, (28)

hu,i
k = (1+ γ

2)Hi1−H11 +
NB

∑
m=1

qm
k H1m− γ

2
NA

∑
l=1

pl
kHl1, (29)

hv, j
k = (1+

1
γ2 )H1 j−H11 +

NA

∑
l=1

pl
kHl1−

1
γ2

NB

∑
m=1

qm
k H1m. (30)

One can see that the state-estimation, choice probabilities
and the control inputs are updated iteratively which engen-
ders an estimate-infer-feedback control (EIFC) algorithm as
summarized in Algorithm 1. This control approach provides
more performance accuracy than the open-loop method, since
state perturbation caused by the disturbance process ξk is
eliminated in every step.

Algorithm 1 Estimate-Infer-Feedback Control Algorithm
Initialization: x̂0: initial state estimate; H: target matrix;

pl
0 = 1/NA, for all l ∈A : initial distribution of Alice’s

choice set; qm
0 = 1/NB, for all m∈B: initial distribution

of Bob’s choice set; α = i ∈A : Alice’s choice; β = j ∈
B: Bob’s choice; k = 0; N ≥ n ∈ Z+: terminal time;

Steps:
1: compute ûi

k and v̂ j
k according to (24)-(30) and run the

system (1);
2: k = k+1; if k = N, stop;
3: acquire zk, and compute x̂k|k according to (6)-(13);
4: compute {pl

k : l ∈ A } and {qm
k : m ∈B} according to

(16)-(19) and (22)-(23); go back to step 1;

Remark 4: The formulation of Alice’s control law ûi
k

relies on Bob’s estimates pm
k , similarly this holds for Bob’s

control law v̂ j
k. In addition to their own estimate-infer proce-

dures presented in section III, each agent needs to conduct
additional estimate-infer procedures from the perspective of
the other agent. This implies that the computation work of
each agent has to be doubled, which may be considered as
the price to pay for the lack of communication.

Remark 5: When Alice chooses i and Bob chooses j, it
can be proved that the expected system state xk converges
to the target state Hi j. Therefore, if the target states are all
distinct, the probabilities pi

k and q j
k of the selected choice

pair (i, j) will tend to 1 while pm
k for all m 6= i and ql

k for all
l 6= j will approach 0, as k→ N. Then, the following control
law follows directly from (24)-(30),

ûi
k =−Ku

k(A
N−kx̂k|k−Hi j), v̂ j

k =−Kv
k(A

N−kx̂k|k−Hi j).

From this one can deduce that the cost of the EIFCs, ûi
k and

v̂ j
k, proposed in this paper is lower than the EFC approach

which does not update about the choice probabilities. Details
will be provided elsewhere due to space limitation.

V. SIMULATION RESULTS

Simulations are conducted for agents described by second-
order integrators, where

A=

[
1 1
0 1

]
,B=

[
0.5
1

]
,C=−B,F= [1,0],Q=

[
0.02 0

0 0.2

]

and R = 0.1, x0 = [0,1]T , N = 10. Then, zk may be inter-
preted as the distance between two agents. Each agent has
two possible choices indexed by {1,2}. The second coordi-
nate of all target values are set to 0, while the projection of
the first coordinate of the target matrix is given by

H =

[
H11 H12
H21 H22

]
=

[
40 20
−20 −40

]
.

It follows that the target matrix is compatible.
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Fig. 1. State trajectories and state estimation for the first coordinate of
xk . Green-dashed lines: open-loop control cannot achieve the targets; Black-
solid lines: feedback control achieves the targets with high accuracy; Circles:
state estimation by Alice; Cross points: state estimation by Bob.

0 2 4 6 8 10

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

(a) (u1
k
, v1

k
)

0 2 4 6 8 10

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

(b) (u1
k
, v2

k
)

0 2 4 6 8 10

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

(c) (u2
k
, v1

k
)

0 2 4 6 8 10

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

(d) (u2
k
, v2

k
)

Fig. 2. Control inputs pairs (circle-lines for ui
k , cross-lines for v j

k). Green:
open-loop control; Blue: EIFC; Red: EFC with fixed probability 0.5.

Simulation results for three types of control methods,
open-loop control, EFC with fixed choice probability 0.5 and
EIFC, are shown in Fig.1-Fig.2. Fig.1 shows the superiority
of feedback control in the presence of disturbances and
demonstrates the states estimated by both agents are equal.
Fig.2 indicates that the EIFC approach with updated choice
probabilities can substantially reduce control cost in contrast
to feedback control laws with unchanged probabilities. Fig.3
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Fig. 3. Time-varying probability distributions {pi
k, i = 1,2} of Alice’s

choice set. The actual control input of Alice is: (a) u1
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and Fig.4 show that as more information are observed, the
probability of an agent’s selected choice judged by the other
agent becomes dominant, so both agents gradually build up
confidence on each other’s choice.

VI. CONCLUSIONS

In this paper, we show how to address a cooperative
control problem that allows agents to have distributed choice.
Under the premise of no explicit communication channels
between agents, distributed feedback controllers are devised
by using state estimations from UMV estimators and ap-
plying inference mechanism to gain choice probabilities
of the other party. This approach is shown to have lower
energy consumption as the centralized controllers. But the
proposed approach is sub-optimal due to the sub-optimality
of the UMV estimator for our problem. So, an optimal

estimator suitable for this type of new problems needs to
be designed. For choice-based systems with more than two
agents, controller design problems are more complicated and
remains open. Analysis of control cost that can be saved by
introducing explicit communication, in other words, the value
of information [10] is another issue to be investigated in the
future.
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