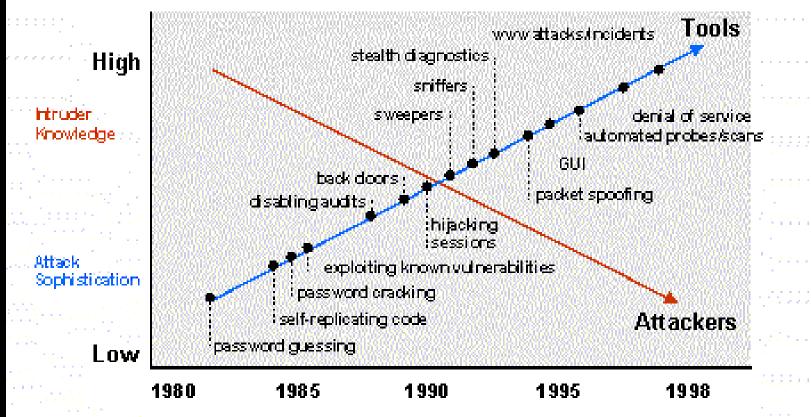
Internet Security

by
Alan S H Lam

Internet Security


- I. Aware of the Risks
 - The threats
- II. How they hack in
 - Two real case studies with live demo
 - amd and named
 - Another hack in demo
 - ftpd, rcp.statd
- III. Fighting back
 - Counter measures and strategies
 - Security Profile and Policy
 - Firewall Architecture
 - IE Network Firewall
- IV. Q&A and discussion

Part I Aware of the risks

- Hacker Technologies
 - Internet Engineering
 - System Administration
 - Network Management
 - Reverse Engineering
 - Distributing Computing
 - Cryptography
 - Social Engineering

- Hacking Tools become more and more sophisticated and powerful in term of
 - Efficiency
 - Distributing
 - Stealth
 - Automation
 - User friendliness

Attack Sophistication vs. Intruder Technical Knowledge

- These hacking tools could be easily download from the Internet =>
 - -Hacker tool ability increases
 - Knowledge of hacker decreases
 - Population of hacker increases
 - Some day, even elementary school kid may hack into your system

- Your host does not need to be as famous as yahoo or ebay to be targeted
 - They need a place to hide their trace
 - -They need your host as a stepping stone to hack other sites
 - They need your host resource to carry out their activities

- Your host security weakness can be identified by scan tool
- Security of any network on the Internet depends on the security of every other networks
- No network is really secure

- The trends
 - Hacking activities become more and more common
 - Poor management networks will become the hackers playground

The Trends

- From Jan to April 2000 (before we fully deploy our IE firewall for RLAB segment), our site has received the following security warning
 - Web page defacement
 - Unauthorized system access
 - Port scanning
 - Ping broadcast scanning
 - Telnet probe scanning

Part II How They Hack In

Two real case studies

- General Steps
 - Locate the victim host by some scanning program
 - Identify the victim host vulnerability
 - Attack the victim host via this vulnerability
 - Establish backdoors for later access

Some hacking tools can automate the above steps into a single command.

- After break-in, use this victim host to
 - hack or attack other network
 - use this victim host resource to carry out their activities
 - Web page defacement for certain assertion

- Buffer Overflow Exploit
 - stuffing more data into a buffer than it can handle
 - it overwrites the return address of a function
 - it switches the execution flow to the hacker code

Buffer Overflow Exploit

Text Region

(program code)

Data Region

(initialization/unintialization)

Stack Region

(subroutine local variable

and return address)

Low Memory

Address

High Memory

Address

Buffer Overflow Exploit

```
void function(char *str) {
 char buffer[16];
 strcpy(buffer,str);
void main() {
 char large_string[256];
 int i;
 for i = 0; i < 255; i++)
  large string[i] = 'A';
 function(large_string);
2002/1/29
```

Top of Stack Function local variable buffer Save Frame Pointer sfp ret Return address Str*

Bottom of stack

Real Case Study I

- Hackers first located the victim hosts by sunrpc scan of 137.189 network
- Break-in the victim hosts via amd (Berkeley Automounter Daemon) buffer overflow vulnerability
- Created backdoor on port 2222 by starting a second instance of inetd daemon
- Used the victim hosts to scan other networks

Real Case Study II

- Hackers first located the victim hosts by BIND port 53 scanning
- Identify the victim OS (a telnet probe)
- Set up a trap DNS daemon at the hacker DNS server
- Kicked the victim hosts to query the hacker DNS server
- Break-in victim hosts via BIND buffer overflow
- Established back door accounts at the victim hosts
- Distribute, built and operated the IRC Bot (eggdrop)

Part III Fighting Back

- Get Your Security Profile
- Set Your Security Policy
- Build the Firewall

Get Your Security Profile

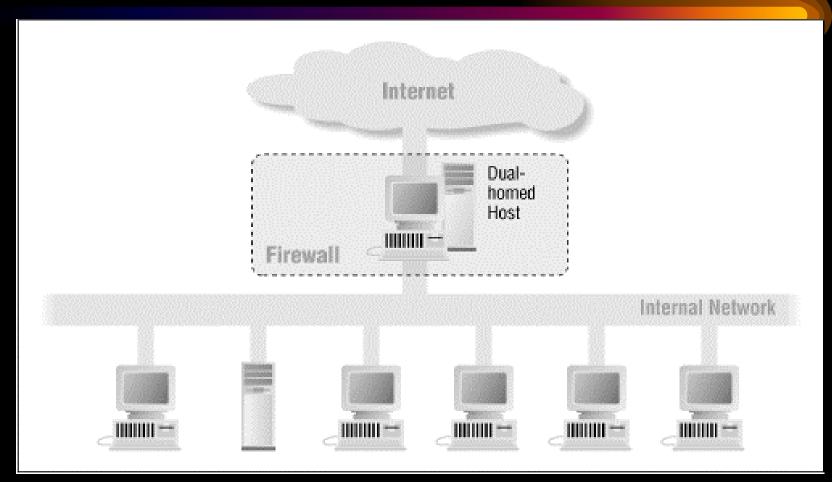
- Act as a hacker and try to break-in your host
 - Port scan your host and see what network ports are open
 - Figure out if the version of your host OS and software applications are vulnerable
 - Can you cover up your trace after break-in? (Does your host have any monitoring or intrusion detection system)
 - Can you easily establish back door after break-ins?(Have you built any firewall?)

Set Your Security Policy

- There is always a trade off between security and convenience
- Identify your host services
 - shutdown any unnecessary ports and build the kernel as minimum as possible
- Identify your target users, trusted hosts and networks so that you can formulate your host access lists
- Set up your firewall
 - use private IP network
 - use proxy servers

Set Your Security Policy

- Set up your monitoring and intrusion detection systems
 - COPS, tripewire, tcpdump, snmp
- Set up you operation codes/rules such as
 - read only file system mounting
 - ssh login
 - sudo
 - restrict login shell
- Set up your recovery plan
 - recovery procedure and backup scheme


Build Your Firewall and IDS

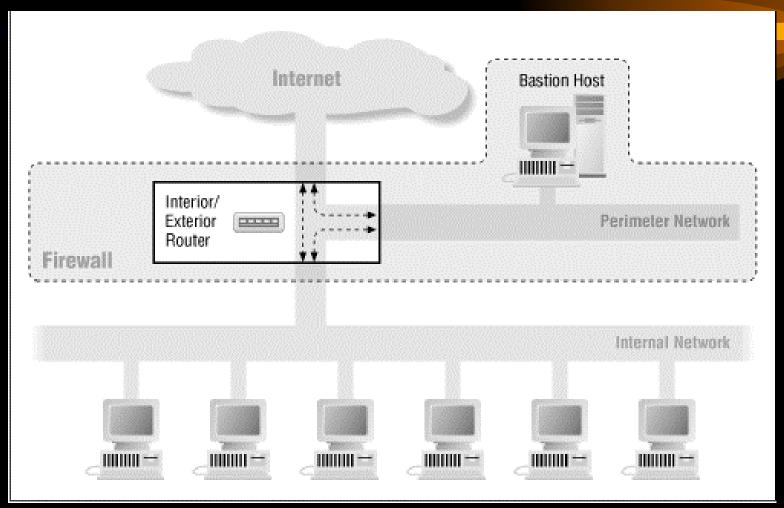
- Control and monitor the traffic IN and OUT of your network
- Block any unnecessary network connection from non-trusted hosts and networks
- Define your access rules according to your security policy
- Use packet filtering and Application Proxy
- Build sniffer to monitor your internal network traffic

2002/1/29

Firewall Architecture

• Dual-home host architecture

2002/1/29


Firewall Architecture

Architecture using two routers

Firewall Architecture

Architecture using a merged interior and exterior router

2002/1/29

Build Your Firewall

How it protects your network

- prevent port scanning
- prevent DDOS attack and IP spoofing from your host
- block any unnecessary network port opening
- increase the difficulty of creating back door after break-in
- facilitate the network monitoring and network intrusion detection

IE Network firewall policy

- Block any unnecessary network connection from non-trusted hosts and networks
- Users outside CUHK networks can only remote login IE network through gateway by using SSH

http://gateway.ie.cuhk.edu.hk

- Firewall Architecture
 - First Layer: Packet Filtering at ERG router
 - Second Layer: Proxy Gateway and Packet Filtering at Research Lab firewall
 - http://firewall.ie.cuhk.edu.hk
 - Third Layer: Set up packet filtering rules by ipchains at your host

• IE Network Firewall Architecture

2002/1/29

Set your own filter rules at your host

Here is the example how you use ipchains to block all non-IE network TCP and UDP connections to your host except 80 port

ipchains -A input -s 0.0.0.0.0.0.0 -d your_host_ip/255.255.255.255.255 80 -i eth0 -p 6 -j ACCEPT ipchains -A input -s ! 137.189.96.0/255.255.252.0 -d 0.0.0.0/0.0.0 -i eth0 -p 6 -j DENY -y ipchains -A input -s ! 137.189.96.0/255.255.252.0 -d 0.0.0.0/0.0.0 -i eth0 -p 17 -j DENY

2002/1/29

References

- Attack Sophistication VS Intruder Technical Knowledge
 - http://www.cert.org/sepg99/sld010.htm
- Systems Compromised Through a Vulnerability in am-utils
 - http://www.cert.org/incident_notes/IN-99-05.html
- CERT Advisory CA-99-12 Buffer Overflow in amd
 - http://www.cert.org/advisories/CA-99-12-amd.html
- Real Case Study I (Buffer Overflow in amd)
 - http://home.ie.cuhk.edu.hk/~shlam/ed/hack/case1

References

- CERT Advisory CA-99-14 Multiple Vulnerabilities in BIND
 - http://www.cert.org/advisories/CA-99-14-bind.html
- Real Case Study II (Vulnerabilities in BIND)
 - http://home.ie.cuhk.edu.hk/~shlam/ed/hack/case2
- Widespread Exploitation of rpc.statd and wu-ftpd Vulnerabilities
 - http://www.cert.org/incident_notes/IN-2000-10.html
- Scans and Probes
 - http://www.cert.org/current/current_activity.html#scans
- Building Internet Firewall
 - By Chapman & Zwicky, O'Reilly ISBN 1-56592-124-0