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Abstract— We consider the slot-synchronized collision channel
without feedback, in which K active users all transmit their
packets to one sink. It is assumed that the channel has the ability
of the multiple-packet reception (MPR), i.e., can accommodate
at most γ (1 ≤ γ < K) simultaneous transmissions. Each
user accesses the channel following a specific periodical zero-one
pattern, called the protocol sequence, and transmits a packet if
and only if the sequence value is equal to one. The fluctuation
in throughput is incurred by random relative delay offsets
among the beginning of protocol sequences due to the lack of
feedback. There are two different design goals in the literature:
throughput invariance and user irrepressibility. The former one
enjoys constant throughput independent of relative delay offsets,
and the latter one guarantees a non-zero individual throughput
in the worst case. However, all previous performance evaluation
on these two criteria assumed that γ = 1. In this paper, we
generalize these results to any γ > 1. For both design objective,
we establish a lower bound on sequence period and prove the
lower bound can be achieved by some construction.

I. INTRODUCTION

A. System Model

As the model studied in this paper is based on

the slot-synchronized collision channel without feedback

(CCw/oFB) [1], we recall some of the basic concepts here.

There are K active users and one sink. We assume that all

users are within the receiving range of the sink. The channel

is time slotted. The packet length is fixed and occupies exactly

a slot. Each user knows the slot boundaries and transmits its

every packet within a channel slot, however, does not know

the time offsets of the others. Generally, there are time delay

offsets among these K users. The channel access is done by

assigning each user a deterministic binary sequence which is

periodic. It is called protocol sequence [1]. The sequence of
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user i is si := [si(0) si(1) . . . si(L − 1)], where L is the

common sequence period of all K sequences. Also it has a

relative shift τi, which is a random integer measured in the

unit of slot duration. User i transmits a packet at slot t if

si(t+ τi) = 1, and keeps silent if si(t+ τi) = 0. The addition

by τi is in modulo L. A packet can be received correctly if

no other packets are being transmitted at the same slot. If two

or more users transmit simultaneously, a collision occurs.

Recently, advanced reception techniques at the physical

layer are employed to allow the channel to accommodate

multiple communications. This has been referred to as the

multiple-packet reception (MPR). Considering MPR, [2] stud-

ied ALOHA based random access, [3]–[6] proposed theoretical

models and access protocols for IEEE 802.11, and [7], [8]

further investigated the throughput and delay gains resulting

from network coding [9]. In this paper, we assume that a

packet can be received error-free if at most γ−1 (1 ≤ γ < K)

other packets are being transmitted simultaneously. Otherwise,

any collided packet cannot be recovered. We refer to γ as

the MPR capability which was commonly assumed in [3]–[8].

The capacity of the collision channel without feedback under

MPR is analyzed in [10], however, with the assumption that all

collided packets have a fixed probability of being recovered,

which is different from the MPR capability discussed here. To

the authors’ knowledge, there is no work on the behavior of

protocol sequences considering the MPR capability γ > 1.

We remark that there is no need of combining network

coding and MPR in our system mode, since the sink is always

available and only one-hop traffic is encountered.

B. Design Criteria on Throughput

The effective throughput of a user under the MPR capability

γ is defined as the fraction of time slots in which it send a

packet without suffering any collision in which more than γ
users are involved. The variation in relative offsets among the

users yields variation in throughput. As argued in [11], there

are two extreme criteria in the design of protocol sequences:

throughput invariance and user irrepressibility.



The first criterion is to maximize the worst-case throughput,

i.e., minimize the variation in throughput due to offsets. If the

throughput of each user is constant and independent of any

relative delay offsets, then the assigned protocol sequences

are said to be throughput-invariant (TI). Shum et al. [12]

proposed shift-invariant (SI) sequences which have perfect

cross-correlation property, and proved that they are TI for

γ = 1. However, when γ > 1, the impact of MPR capability

on design of TI sequences is not examined. In this paper,

we establish a lower bound on sequence period and prove

that the construction of SI sequences [11] produces optimal

TI sequences for any γ. Moreover, it is shown that the TI

sequences must be SI in some cases.

The second design criterion is to guarantee that the through-

put of each user is non-zero for any relative delay offsets. A

user with such property can send at least one packet within the

sequence period with probability one in the worst-case, in con-

trast to the random schemes. This strict guarantee is important

in the application of monitoring medical activities and natural

disasters. The protocol sequences with this performance are

said to be user-irrepressible (UI). All protocol sequences

in [11]–[16] can be found UI for γ = 1. In order to minimize

delay within which each user has transmitted a packet without

collision, the objective of designing UI sequences is to make

the period as short as possible. However, the minimum period

of UI sequences has not been investigated for γ > 1. We

in this paper present the property of UI sequences for any γ
and give an asymptotically tight bound on sequence period

for some cases by some known results from conflict-avoiding

codes (CACs) [17]–[19].

Our work can be viewed as a generalization of results

in [11], [12].

II. DEFINITIONS AND NOTATIONS

We consider K binary sequences s1, s2, . . . , sK of common

period L. The offset of user i is τi for i = 1, 2, . . . ,K .

The Hamming weight wi of si is defined as the number of

ones in its sequence period, i.e., wi :=
∑L−1

t=0 si(t). The duty

factor fi of si is defined as the fraction of ones of si in a

period, for i = 1, 2, . . . ,K , i.e., fi :=
1
L

∑L−1
t=0 si(t).

The cyclic shift of s by τ is denoted by

s
(τ) := [s(τ) s(1 + τ) . . . s(L − 1 + τ)].

The throughput of user i is defined as

Ri(τ1, τ2, . . . , τK) =
1

L

∑

bi=1,

q≤γ−1

N(b1, . . . , bK |s
(τ1)
1 , . . . , s

(τK)
K ),

(1)

in which bi ∈ {0, 1} for all i, q =
∑

j 6=i bj and

N(b1, . . . , bK |s
(τ1)
1 , . . . , s

(τK)
K ) denotes the number of time

indices t, 0 ≤ t < L, such that si(t + τi) = bi for all i.
This computes the fraction of time slots in which at most

γ users including user i are transmitting. For simplicity, we

sometimes use Ri to denote the throughput of user i. To avoid

the uninteresting cases, we only consider TI sequences with

Ri > 0 for any i and any relative shifts.

We identify the K users with K := {1, 2, . . . ,K}. Let OK

be the set

K
⋃

n=1

{(i1, . . . , in) ∈ Kn : i1 < i2 < · · · < in} .

An element in OK corresponds to an ordered tuple of users.

For A = (i1, i2, . . . , in) ∈ OK , the generalized Hamming

crosscorrelation associated with A is defined as

H(τi1 , . . . , τin ;A) :=

L−1
∑

t=0

n
∏

j=1

sij (t+ τij ).

Given an ordered tuple A ∈ OK , then H(τi1 , . . . , τin ;A) is

said to be SI if it is equal to a constant for any τi1 , . . . , τin .

A sequence set is said to be SI [12] if H(τi1 , . . . , τin ;A) is

SI for every A in OK . A sequence set is said to be pairwise

SI [15] if H(τi1 , . . . , τin ;A) is SI for every A in OK with

|A| = 2.

III. TI SEQUENCES FOR MPR

A. Zero-variance Throughput

In this subsection, we generalize the result in [12, Thm. 3]

for γ = 1 to those for 1 ≤ γ < K .

Lemma 1 ( [12, Lemma 2]). Suppose that s1, s2, . . . , sn are

n binary sequences of common period L. For b1, . . . , bn ∈
{0, 1}, we have

L−1
∑

τ1=0

. . .
L−1
∑

τn=0

N(b1, . . . , bn|s
(τ1)
1 , . . . , s(τn)n ) = L

n
∏

i=1

N(bi|si).

(2)

Theorem 2. Let s1, s2, . . . , sK be K TI protocol sequences

for the MPR capability γ (1 ≤ γ < K) with duty factors

f1, f2, . . . , fK respectively. Then we have

Ri = fi
∑

H⊆K\{i}
|H|<γ

∏

j∈H

fj
∏

k∈K\({i}∪H)

(1 − fk). (3)

Proof: Since TI protocol sequences produce zero-variance

throughput, Ri is a constant function of τ1, . . . , τK and it must

be equal to its average value. For purposes only of our proof,

we now specify τ1, τ2, . . . , τK are independent and uniformly

distributed random variables that are equally likely to take on

any of L values: 0, 1, . . . , L− 1. After taking the expectation

over (τ1, τ2, . . . , τK), we obtain the average throughput of user
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Fig. 1. The symmetric system throughput of TI sequences for 10 ≤ K ≤ 50.

i as the following:

E

(

Ri(τ1, τ2, . . . , τK)
)

=
1

L
E

(

∑

q≤γ−1,bi=1

N(b1, . . . , bK |s
(τ1)
1 , . . . , s

(τK)
K )

)

(4)

=
1

L

∑

q≤γ−1,bi=1

E

(

N(b1, . . . , bK |s
(τ1)
1 , . . . , s

(τK)
K )

)

=
1

L

∑

q≤γ−1,bi=1

1

LK−1

K
∏

j=1

N(bj |sj) (5)

=
1

LK−1

∑

q≤γ−1

N(1|si)

L

K
∏

j=1,j 6=i

N(bj |sj)

=
1

LK−1
fi

∑

q≤γ−1

K
∏

j=1,j 6=i

N(bj|sj)

= fi
∑

H⊆K\{i}
|H|<γ

∏

j∈H

fj
∏

k∈K\({i}∪H)

(1− fk),

The equation (4) directly follows from the definition of the

throughput of user i. The equation (5) is due to Lemma 1.

For the symmetric case that each user has the same duty

factor f , each user enjoys the zero-variance throughput:

γ−1
∑

j=0

(

K − 1

j

)

f j+1(1− f)K−1−j . (6)

The results are shown in Fig. 1 for 10 ≤ K ≤ 50 with γ =
1, 5, 10 and f = 1/10, 1/20, respectively.

B. Lower bound on Minimum Period

Long sequence period would bring instability of throughput

on a short-time scale. We thus derive lower bounds on the

period of TI protocol sequences for any γ. Let gcd(x, y)
denote the greatest common divisor of x and y.

We have a general definition on a given set of sequences.

Given a set of K binary sequences, we divide it into two

parts: G1 = {s1, . . . , sM} and G2 = {sM+1, . . . , sK} for

some M < K . For i = 0, 1, . . . ,M let λi(τ1, . . . , τM )
denote the number of time indices t such that there are

exactly i ‘1’s among s1(t+τ1), . . . , sM (t+τM ). Similarly, for

i = M + 1, . . . ,K let θi(τM+1, . . . , τK) denote the number

of time indices t such that there are exactly i ‘1’s among

sM+1(t+ τM+1), . . . , sK(t+ τK). Define

θ≤i(τM+1, . . . , τK) =

i
∑

j=0

θj(τM+1, . . . , τK).

Note that λM (τ1, . . . , τM ) = H(τ1, . . . , τM ; (1, . . . ,M)).

Theorem 3. Let γ be any integer such that 1 ≤ γ < K . If

a set of K binary sequences is TI for the MPR capability γ,

then these K sequences are pairwise SI.

Proof: Let G1 = {s1, s2} and G2 = {s3, s4, . . . , sK}
following the notations we defined at the beginning of this

subsection. Then we choose the relative shifts τ∗3 , τ
∗
4 , . . . , τ

∗
K

such that θγ−1(τ
∗
3 , . . . , τ

∗
K) > 0. This combination of relative

shifts can always been found since there are at most γ−1 all-

one sequences in G2 for the case 1 ≤ γ < K . (If there are γ
all-one sequences, then all packets from other K−γ sequences

cannot be received error-free.) More precisely, assume in G2

that there are exactly h all-one sequences. Then we cyclic shift

some γ − h− 1 non all-one sequences such that the first time

slot of them are all equal to one, and cyclic shift the remaining

sequences such that the first time slot of them are all equal to

zero. Thus one sees there are exactly γ − 1 ones in the first

time slot.

Define T1 as:

T1 :=
∑

b1+b2=1

b3+...+bK<γ

N(b1, . . . , bK |s
(τ1)
1 , . . . , s

(τK)
K )

and T2 as:

T2 :=
∑

b1+b2=2

b3+...+bK<γ−1

N(b1, . . . , bK |s
(τ1)
1 , . . . , s

(τK)
K ).

We assume the relative shift between G1 and G2 is uniformly

distributed in 0, 1, . . . , L−1. After taking the expectation over

this relative shift, by the elementary property of Hamming

crosscorrelation, we have the following:

E(LR1 + LR2) =E(T1 + 2T2) = E(T1) + 2E(T2) (7)

=
1

L

2
∑

i=1

iλi(τ1, τ2)θ≤γ−i(τ
∗
3 , . . . , τ

∗
K). (8)

Now we change the pair of relative shifts from (τ1, τ2) to

(τ ′1, τ
′
2). Let

σ := λ2(τ
′
1, τ

′
2)− λ2(τ1, τ2). (9)

By the fact that

λ1(τ1, τ2)+2λ2(τ1, τ2) = Lf1+Lf2 = λ1(τ
′
1, τ

′
2)+2λ2(τ

′
1, τ

′
2),

we have

λ1(τ
′
1, τ

′
2)− λ1(τ1, τ2) = −2σ. (10)



Since R1 +R2 is zero-variance, by (7) and (8), we have

2
∑

i=1

i λi(τ1, τ2)θ≤γ−i(τ
∗
3 , . . . , τ

∗
K)

=
2

∑

i=1

i λi(τ
′
1, τ

′
2)θ≤γ−i(τ

∗
3 , . . . , τ

∗
K).

Then from (9) and (10) we further obtain

σ θγ−1(τ
∗
3 , . . . , τ

∗
K) = 0,

which implies that σ = 0 because of the choice of τ∗3 , . . . , τ
∗
K .

Thus, λ2(τ1, τ2) is a constant function of τ1, τ2.

Since λ2(τ1, τ2) = H(τ1, τ2; (1, 2)) and the choice of s1, s2
is arbitrary, we conclude that these K sequences are pairwise

SI for any γ < K .

Theorem 4 ( [15, Thm. 1]). The common period of any set

of K pairwise SI sequences with duty factors ni/di, where

gcd(ni, di) = 1 for all i, is divisible by d1d2 · · · dK . In par-

ticular, the minimum common period is at least d1d2 · · · dK .

Theorem 5. Let γ be an integer with 1 ≤ γ < K . If a set of K
binary sequences with duty factors ni/di, where gcd(ni, di) =
1 for all i, is TI for the MPR capability γ, then the period L is

divisible by d1d2 · · · dK . In particular, the minimum common

period is at least d1d2 · · · dK .

Proof: It directly follows from Theorem 3 and Theorem 4.

C. Optimal Construction

Shum et al. [12] showed that any SI sequence set is TI for

the ordinary model (i.e., γ = 1). We extend this property to

general γ by means of the following result.

Theorem 6 ( [12, Thm. 1]). The sequence set s1, s2, . . . , sK
is SI if and only if for each choice of b1, . . . , bK ,

N(b1, . . . , bK |s
(τ1)
1 , . . . , s

(τK)
K ) is a constant function of

τ1, . . . , τK .

Theorem 7. If a sequence set is SI, then it is TI for any MPR

capability γ.

Proof: From (1), we obtain that the throughput

Ri(τ1, τ2, . . . , τK) can be computed only in terms of

N(b1, . . . , bK |s
(τ1)
1 , . . . , s

(τK)
K ) for some particular choices of

b1, . . . , bK . By Theorem 6, we find each term of the above is a

constant function of τ1, . . . , τK if the sequence set is SI. Thus

Ri(τ1, τ2, . . . , τK) is also a constant function of τ1, . . . , τK ,

which implies that a SI sequence set must be TI for any γ.

With the duty factors ni/di, where gcd(ni, di) = 1 for all

i, the construction of SI sequences in [12] has the common

period d1d2 · · · dK . An interesting fact is that this construction

indeed produces optimal TI sequences for any 1 ≤ γ < K
in the sense that the period achieves the lower bound in

Theorem 5.

Example 1: The following are three sequences of period

27 with duty factors 2/3, 1/3 and 1/3:

s1 = [1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0]

s2 = [1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0]

s3 = [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

One can check the above sequence set is SI and thus TI for

any γ. We have R1 = 8/27, R2 = R3 = 1/27 for γ = 1 and

R1 = 16/27, R2 = R3 = 7/27 for γ = 2 which are both in

accordance with Theorem 2. Its period is 27 and achieves the

lower bound presented in Theorem 5 for γ = 1, 2.

D. Structural Theorem

The SI structure is necessary for optimal TI sequences under

some technical conditions.

Theorem 8 ( [15, Thm. 3]). Let p be a prime. If K pairwise SI

protocol sequences with duty factors ni/p for i = 1, 2, . . . ,K ,

have a common minimum period pK , then they are SI.

Theorem 9. Let p be a prime and γ be a positive integer

smaller than K . If a set of K binary sequences with duty

factors ni/p for i = 1, 2, . . . ,K and period pK , is TI for the

MPR capability γ, then these K sequences are SI.

Proof: Directly follows from Theorem 3 and Theorem 8.

IV. UI SEQUENCES FOR MPR

The following lemma provides a lower bound on the Ham-

ming weight of any sequence in a UI sequence set for the

MPR capability γ. The proof is straightforward and omitted.

Lemma 10. Let s1, s2, . . . , sK be K UI sequences for the

MPR capability γ. Then we have

wi ≥

⌊

K − 1

γ

⌋

+ 1,

for i = 1, 2, . . . ,K .

In order to investigate the most energy-efficient UI se-

quences, we in this section focus on the situation where

each user transmits exactly ⌊(K − 1)/γ⌋ + 1 packets in a

period, especially when γ|K . Note that the UI sequences with

common Hamming weight K for γ = 1 studied in [11] is a

special case here.

A set of binary sequences, say {s1, s2, . . . , sK}, with com-

mon period is called a CAC with weight w if each wi = w and

H(τi1 , τi2 ;A) ≤ 1 for any A = (i1, i2) ∈ OK and any τi1 , τi2 .

It is obvious that a CAC with weight w and K codewords

provides a UI sequence set for

γ ≥

⌊

K − 1

w

⌋

+ 1.

In the case of γ|K , we have the following observation.

Proposition 11. Let K = wγ. A set of K UI sequences

of common Hamming weight w for the MPR capability γ is

equivalent to a CAC with weight w and K codewords.



Proof: Only the sufficient part needs to be verified.

Since there is no all-zero sequence, the pairwise Hamming

crosscorrelation is always non-zero. Assume by contradiction

that H(τ1, τ2; (1, 2)) ≥ 2. Then, one can adjust τ3, τ4, . . . , τK
in such a way that each one in s

(τ1)
1 is blocked by at least γ

transmissions, which contradicts to the UI property.

Example 2: The following six sequences of period 25 form

a CAC with weight 3, and thus a UI sequence set for γ = 2.

s1 = [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

s2 = [1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

s3 = [1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]

s4 = [1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0]

s5 = [1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

s6 = [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Among all CACs of period L and weight w, let M(L,w)
denote the maximum number of codewords. The following

asymptotic bound was shown in [18]:

lim sup
L→∞

M(L,w)

L
=

1

2w − 2
. (11)

On the other hand, let L(K,w) be the smallest period L
such that a CAC with weight w and K codewords exists. By

definition, we have

lim sup
K→∞

K

L(K,w)
= lim sup

L→∞

M(L,w)

L
,

and thus

lim sup
K→∞

2wK

L(K,w)
= 1. (12)

Given positive integers γ and K with γ|K , let Lγ(K)
denote the smallest period L such that a set of K UI sequences

of weight K/γ for MPR capability γ exists. By Proposition 11,

one has Lγ(K) = L(K,K/γ). Hence, from (12), we have

the following result, which is an extension of [11, Theorem

7]. Note that the involved sequence is of positive rational

numbers.

Theorem 12.

lim inf
K→∞

Lγ(K)

2K2/γ
= 1.

V. CONCLUSION

In this paper, we investigate a collision MPR channel

without feedback. We generalize the results of [11], [12], i.e.,

study TI and UI sequences for any MPR capability γ. We

prove that TI sequences must be pairwise SI for any γ and the

period thus grows like KK , the construction of SI sequences

in [12] indeed produces optimal TI sequences for any γ, and

the SI property is intrinsic for optimal TI sequences if the duty

factor meets some technical conditions. On the other hand, we

find that the UI sequences studied in this paper are equivalent

to a CAC with the weight K/γ and K codewords. It is further

shown that an asymptotically optimal construction have the

sequence period approximately 2K2/γ.

For ad hoc network or multi-hop traffic, one would note that

network coding can significantly increase the performance of

access protocol with MPR, as presented in [7], [8]. Our follow-

up work seeks to explore the sequence design simultaneously

considering network coding and MPR.
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