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Abstract—Mixing time is a fundamental property for a number
of transient behaviors of stochastic processes, particularly, ran-
dom access in CSMA networks. We use mixing time to character-
ize temporal starvation, which is a transient phenomenon where
links can starve for prolonged periods indefinitely often despite
having good stationary throughput. Considering a general CSMA
network, we study a fundamental setting with multiple frequency
agility, such that more than one frequency channel is available,
and a link can transmit on at most one of the frequency channels
not occupied by its neighbors. The characterization of throughput
in such a setting is challenging, involving a hidden Markov chain
of the associated stochastic process. This paper develops new
results based on the mixing time of hidden Markov chains to shed
light on the temporal starvation. Our analytical results quantify
the effect of the number of frequency channels on temporal
starvation. We provide sufficient and necessary conditions for
fast mixing time of the corresponding hidden Markov chain.

Index Terms—CSMA Networks, Distributed Resource Alloca-
tion, Transient Behavior, Mixing Time, Temporal Starvation

I. INTRODUCTION

The study of efficient and fair resource allocation mech-
anisms in communication networks has been a rich and
challenging subject. While the stationary and long-term be-
havior has been extensively investigated, recent studies have
only begun to tackle the more practically relevant but also
more difficult problem of temporal and transient behavior in
communication networks [3], [1], [5].

In this paper, we study a commonly observed performance
issue in CSMA networks, namely temporal starvation. Tem-
poral starvation is intrinsic in CSMA networks, which refers
to the phenomenon that links can starve for prolonged periods
indefinitely often despite having good stationary throughput.
We characterize temporal starvation by the mixing time of
the associated throughput process of CSMA networks. We
are interested in how the availability of multiple frequency
channels will help to alleviate temporal starvation.

We consider the general setting of CSMA networks with
multiple frequency agility [8], in which more than one fre-
quency channel is available, and a link can transmit on at most
one of the frequency channels not occupied by its neighbors.
Although the focus of this paper is on CSMA networks,
multiple frequency agility is a basic framework for general
distributed resource allocation mechanisms. For instance, a
node can access a resource (e.g., a frequency channel) when
it is locally detected to be idle and the operation is permitted
by policy (e.g., not simultaneously accessing more than one
channel). Our study provides a foundation to address the

transient behavior of general distributed resource allocation
problems1.

The main goal of this paper is to understand and quantify
the effect of the number of frequency channels on temporal
starvation in general CSMA networks. We have several new
contributions toward the analytical understanding of multiple
frequency agility.

First, we find that the study of temporal starvation in multi-
frequency CSMA must be done through a hidden Markov
chain. This is in contrast to the single frequency scenario,
where the temporal starvation is merely characterized by a
straightforward Markov chain [3]. In particular, we study
the mixing time of a hidden Markov chain considering the
activeness of each link rather than the full channel state that
not only includes the activeness of the link, but also which
frequency it is using when it is active. We remark that the
mixing time of hidden Markov chains has not been well-
studied before. Thus, our study not only yields new insights
on CSMA networks, but also new techniques for analyzing
hidden Markov chains in general.

Second, we quantify the sufficient conditions under which
temporal starvation can be significantly alleviated. While it
is intuitive that having more channels can alleviate temporal
starvation, this is true only when the number of channels is
large enough. Our simulation suggests that the number of
channels being greater than twice of the maximum degree of
the conflict graph (i.e. q > 2∆) is a critical condition for
temporal starvation to be substantially alleviated. We confirm
this observation by upper bounding mixing time for the cor-
responding hidden Markov chain analytically. We remark that
it is non-trivial to obtain the sufficient conditions of q > 2∆
2.

Third, we show that temporal starvation can be severe
if there is insufficient number of channels. We generalize
Cheeger’s inequality in the context of hidden Markov chains to

1An immediate application is cognitive radio – nodes dynamically share
multiple frequency bandwidth spectrum, subject to complex policy constraints.

2In the literature of mixing time[2], characterization of conditions to have
fast mixing time is normally challenging. A related problem is random
coloring[2](sampling the uniform distribution of graph coloring by Markov
chain monte carlo). However, not only is the complete characterization of
mixing time for random coloring a wide open question, it is also highly non-
trivial even to prove fast mixing for specific graphs with slightly fewer number
of colors than twice the maximum degree of the graphs. When compared
to mixing time analysis of random coloring, our problem not only has less
symmetry but is also related to a less well structured stochastic process (hidden
Markov chain).



establish a necessary condition for fast mixing. This necessary
condition is on the number of channels. Violating the condition
will lead to serious temporal starvation. In particular, we show
that if q << ∆, mixing time for the hidden Markov chain
scales exponentially with the number of links under a complete
bipartite graph.

In summary, our analytical results includes:
• New tools to upper- and lower- bound the mixing time

of hidden Markov chains.
• Sufficient conditions for fast mixing when the number of

channel is sufficient.
• An example of slow mixing time when the number of

channels is insufficient.
We believe our results add to fundamental understanding of
temporal starvation in CSMA networks and the extent to which
multi-channel agility may help alleviate it.

A. Motivating Observations

Before presenting our analytical results, we briefly provide
some motivating observations from simulation3 (see Fig. 1).

We simulate CSMA with multiple frequency agility on a
simple 4×4 torus network (i.e., a boundaryless 2D grid). Note
that the detailed CSMA model will be introduced next. We test
under different numbers of channels and present the data of
temporal starvation at 4 different time points (i.e. t = 100, 500,
1000, 2000). We observe that temporal starvation (measured
by the throughput loss as compared to stationary throughput)
is significantly reduced, when the number of channels is larger
than twice the maximum degree (i.e., 8). Moreover, we observe
temporal starvation is severe when there is insufficient number
of channels.

Motivated by these observations, we seek to provide a
comprehensive understanding of these observations in the
following sections.
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Fig. 1. Temporal starvation vs number of channels, for 4× 4 torus
(i.e., a boundaryless 2D grid).

II. MODEL AND PROBLEM FORMULATION

A. Basic CSMA Operations

In a CSMA network with multiple frequency agility, there
are n physical links and q frequency channels. Each link has
a set of neighboring links. A link can access a channel if and
only if the channel is not occupied by its neighboring links,
and the link is not using any other channels at the moment. We

3A detailed discussion of simulation can be found in [6].

model such a network by a conflict graph G , (V,E) where
V is a set of physical links (each link is a pair of transmitter
and receiver in CSMA network), and E is a set of relations
representing whether two physical links are neighbors to each
other. We let n , |V |. For any v ∈ V , we denote by N (v)
the set of its neighbors. Let ∆ be the maximum degree of
the graph, ∆ , maxv∈V |N (v)|. We assume that all the links
have unit capacities. But our results can be generalized to the
case of heterogeneous link capacities.

Similar to standard CSMA protocol, we assume that each
link maintains a backoff counter for each channel. The backoff
value is generated according to an exponential distribution
with a certain mean 1

µcd
. The link counts down all the q

counters simultaneously at unit rate. When the value of a
counter reaches zero, the link transmits on the correspond-
ing channel for a duration that follows another exponential
distribution with mean 1

µtx
. During the countdown process,

if a link senses a channel being occupied by its neighboring
links, it will freeze the corresponding counter, which will be
resumed after the channel is released.
B. Throughput Process

At any given time, a link can be in one of the states, C ,
{0, 1, . . . q}, where state 0 means the link is idle (i.e., not
occupying any channels), and state i > 0 means that the link
is actively transmitting on channel i. A feasible state of the
CSMA network is a vector containing feasible channel states
of the links. Denote the set of all feasible states by

S ,
{
x ∈ Cn | x(v) 6= x(u) or x(v) = x(u) = 0, (u, v) ∈ E

}
where x(v) ∈ C represents the channel state of v in CSMA
network state x.

We can model the evolution of the states of CSMA network
with multiple frequency agility by a continuous-time Markov
chain (Xt)t≥0 with S as the sample space, which we call
CSMA-MF. (Xt)t≥0 is a time-reversible Markov chain with
stationary distribution as

π(x) =

∏
v∈V :x(v) 6=0 λ∑

x′∈S
∏
x′(v)6=0 λ

, x ∈ S (1)

where λ , µcd

µtx
, is referred as link aggressiveness [4].

Note that (Xt)t≥0 not only captures if a link is transmitting,
but also which channel it uses. For link throughput, however,
we are only interested in whether the link is transmitting or
not. Thus, the link throughput is characterized by a hidden
Markov chain of the “link-activeness” on (Xt)t≥0.

For a state x ∈ S, we define a mapping g[x] : S 7→ {0, 1}n
that maps a state of channels to a state of link-activeness:

g[x](v) =

{
0, if x(v) = 0

1, if x(v) 6= 0
(2)

Thus, (g[Xt])t≥0 defines a hidden Markov chain for the
throughput process of CSMA-MF.

Let B , g[S] be the range of g. If (Xt)t≥0 converges,
the hidden Markov chain (g[Xt])t≥0 also converges to its



corresponding stationary state distribution:

π(g−1[b]) =
∑

x∈S:g[x]=b

π(x), b ∈ B (3)

C. Mixing Time

To characterize the transient behavior of CSMA-MF, we
rely on the notion of mixing time. We review the background
of mixing time in a general setting here.

Let µ and ν be probability density functions defined on a
sample space Ω. The total variation distance between µ and ν
is defined by ∥∥µ− ν∥∥

TV
, max

A⊂Ω
|µ(A)− ν(A)| (4)

We denote the worst case distance from stationarity for
a continuous time Markov chain (Xt)t≥0 with stationary
distribution π by

d(t) , max
x0∈Ω

∥∥∥P{Xt = · | X0 = x0} − π(·)
∥∥∥
TV

(5)

Define a mapping g̃ : Ω → Ω̃ as a surjective mapping to
a smaller sample space Ω̃. Similarly, we define the worst
case distance that captures how far a hidden Markov chain
(g̃[Xt])t≥0 evolves from its stationary state by

dHM(t) , max
x0∈Ω

∥∥∥P{g̃[Xt] = · | X0 = x0} − π(g̃−1[·])
∥∥∥
TV

(6)
Based on the definitions of distances, mixing time that

captures how fast a Markov chain or a hidden Markov chain
converges to its stationary state distribution, is defined by

t(ε) , inf{t ≥ 0 | for all τ > t, d(τ) ≤ ε} (7)

The mixing time of a hidden Markov chain is defined by
tHM(ε) , inf{t ≥ 0 | for all τ > t, dHM(τ) ≤ ε} (8)

It is straight-forward to see that
tHM(ε) ≤ t(ε) (9)

This provides an immediate way to characterize the mixing
time of a hidden Markov chain by that of a Markov chain.
However, We remark that the mixing time of a hidden Markov
chain can be significantly different from that of the underlying
Markov chain [6]. Thus it is necessary to directly characterize
the mixing time of a hidden Markov chains to obtain accurate
characterization.

After introducing mixing time in a general setting, we take
Ω = S be the set of all feasible states of the CSMA network,
{Xt} be the Markov chain CSMA-MF and g̃ = g be the link
activeness map in this study.

D. Temporal Starvation

A detrimental transient phenomenon is temporal starvation,
where links can starve for prolonged periods indefinitely often.
To characterize temporal starvation, we define some notations.

For any given b ∈ B, we define

Px0
(Xt ∈ g−1[b]) ,

∑
x∈S:g[x]=b

P{Xt = x | X0 = x0} (10)

Define the temporal throughput of link v at time t, starting
at initial state x0 ∈ S, as

Atx0
(v) ,

∑
b∈B:b(v)6=0

Px0
(Xt ∈ g−1[b]) (11)

The stationary throughput of v is given by

T(v) ,
∑

b∈B:b(v)6=0

π(g−1[b]) (12)

Note that as the hidden Markov chain converges to its sta-
tionary state distribution, the instantaneous throughput Atx0

(v)
converges to the stationary throughput T(v).

We now define a measure of temporal starvation at v
within interval t starting with initial state x0 by the maximum
temporal throughput loss, defined by

`(t) , max
v∈V,x0∈S

1

t

[∫ t

0

(
T(v)− At

′

x0
(v)
)
dt′
]+

, (13)

where [x]+ = max(x, 0). `(t) is a natural measure, which
counts the loss from the cumulative throughput a link will
receive when starting at a particular state within a certain
interval, as compared to the stationary throughput.

Lemma 1. [6]If t ≥ n · tHM( ε4 ) and n is sufficiently large,

`(t) ≤ ε (14)

Hence, if we can characterize tHM(ε), we can provide
bounds on temporal starvation of CSMA-MF. In simulation
studies, we usually observe that the regions of fast mixing time
imply that of low temporal starvation (e.g., as corroborated in
Sec. I-A)

E. Main Problem

After relating temporal starvation to mixing time (as a tool
to understand the simulation results in Sec. I-A), we seek to
characterize fast mixing time for the throughput process of
CSMA-MF in the rest of the paper.

In the literature of mixing time [7], fast mixing usually
refers to mixing time being polynomial in terms of n, and of-
tenly, it is O

(
nr(lnn− ln ε)

)
. Thus, our goal is to characterize

the regions of tuple (q, λ) for fast mixing time. Specifically, we
use the superscript csma to denote the mixing time for CSMA-
MF. For example, let the mixing time for the throughput
process of CSMA-MF be tcsma

HM (ε). We aim at finding the
sufficient conditions that

tcsma
HM (ε) ≤ k1

µtx + q · µcd
nr(lnn− ln ε) (15)

where k1 and r are some non-negative constants.

F. Approaches and Results

The sufficient conditions for fast mixing of CSMA-MF is
summarized in Table I. One can see from Table I region 2
to 4 that fast mixing is guaranteed4 for q > 2∆, λ > 1 .

4The upper bound conditions for λ and q in Table I can be relaxed to any
other polynomials in n to yield other polynomial upper bounds on mixing
time



Region Conditions on q Conditions on λ Types of graphs Bounds on CSMA-MF mixing time Section

1 n > q > ∆ λ < 1
2∆

Arbitrary tcsma
HM (ε) ≤ 4c

(µtx+qµcd)
n(lnn− ln ε) Sec. IV-A

2 q > ∆2n logn λ > 1 Arbitrary with large n tcsma
HM (ε) ≤ 3c

(µtx+qµcd)
(lnn− ln ε

2
) Sec. IV-A

3 n > q > 2∆ λ > 4n3q
(q−∆)(q−2∆)ε

Arbitrary with large n tcsma
HM (ε) ≤ 6c

(µtx+qµcd)
n(lnn− ln ε

2
) Sec. IV-A

4 n ≥ q ≥ 2∆ lnn > λ > 1 Arbitrary tcsma
HM (ε) ≤ 10c

µtx+qµcd
n3(lnn)3(lnn− ln ε) Sec. IV-B

5 n ≥ q ≥ ∆ + ∆1−δ lnn > λ > 1 Planar with large n tcsma
HM (ε) ≤ 10c

µtx+qµcd
n3(lnn)3(lnn− ln ε) Sec. IV-B

n > q > (1 + ε1)∆ lnn > λ > 1 Planar, triangle-free tcsma
HM (ε) ≤ 10c

µtx+qµcd
n3(lnn)3(lnn− ln ε) Sec. IV-B

and ∆ > (lnn)2 with large n
6 n ≥ q ≥ k2

∆
ln ∆

lnn > λ > 1 Trees with large n tcsma
HM (ε) ≤ 10c

µtx+qµcd
n3(lnn)3(lnn− ln ε) Sec. IV-B

and ∆ ≥ k1(lnn)b1

TABLE I
SUFFICENT CONDITIONS FOR FAST MIXING TIME FOR THE THROUGHPUT PROCESS OF CSMA-MF.

We establish these sufficient conditions by first uniformiz-
ing the CSMA-MF (Section III) and then analyzing the
discrete time CSMA-MF through a modified approach for
path coupling(Section IV-A) and reduction to another Markov
chain(Section IV-B). Finally, we end with an example of slow
mixing when the number of channels is not sufficient(Section
V).

III. UNIFORMIZATION OF CSMA-MF

We uniformize CSMA-MF to discrete-time CSMA-MF by
taking ν = n(qµcd + µtx) as the uniformization constant.
Equivalently, discrete-time CSMA-MF {Xk} is a Glauber
dynamics, whose state transitions from Xk to Xk+1 proceed
as follows. Note that A(Xk, v) is the set of available channels
at node v.
◦ Discrete-time CSMA-MF:

1) We first uniformly randomly select a link v ∈ V
2) The new state Xk+1 agrees everywhere with Xk except

possibly at v. Xk+1(v) = c̃ is updated with probability
pc̃ as follows.

a) If Xk(v) = 0, we set

pc̃ =


λ

(1+qλ) if c̃ ∈ A(Xk, v)
1+λ(q−|A(Xk,v)|)

1+λq if c̃ = 0

0 otherwise
b) If Xk(v) 6= 0, we set

pc̃ =


1

1+λq if c̃ = 0
λq

1+λq if c̃ = Xk(v)

0 otherwise

With notation of having (̄·) as the discrete-time quantity
(e.g. t̄HM),we can relate continuous-time mixing time and
discrete-time mixing time as follows.

Lemma 2. [6] If t̄HM( ε2 ) ≤ k , then tHM(ε) ≤ kc
ν , where c

is a constant satisfying c
ec−1 ≤ ε

2 and c ≥ 1.

IV. SUFFICIENT CONDITIONS FOR FAST MIXING

A. Modified Approach for Path Coupling

Path coupling is a useful technique to upper bound mixing
time of Markov chains and thus to obtain sufficient conditions
for fast mixing. However, we study the hidden Markov chain

instead of the Markov chain. This requires a different approach
of path coupling. Hence, we develop a modified approach of
path coupling in order to obtain bounds for the mixing time
of the throughput process of CSMA-MF.

1) Coupling and its challenges: Given any two random
variables X and Y , we are free to construct a joint random
variable Z = (X,Y ) as long as the marginal probability
distribution function in each coordinate in Z is equivalent to
the original random variable X or Y . Such a construction is
called a coupling, which provides a useful way to bound the
total variation distance of two random variables.

One can consider one-step maximal coupling (a standard
technique in path coupling to bound mixing time in random
coloring literature[2]) for discrete-time CSMA-MF to bound
t̄csma(ε). In particular, by applying such coupling, when λ <
1
∆ , we can show fast mixing for CSMA-MF in region 1 of
Table I.

Nonetheless, when λ > 1
∆ , one cannot obtain similar results

[6] using the same method. Therefore, we develop a modified
approach for path coupling to work on hidden Markov chain
directly, and obtain fast mixing time for the throughput process
of CSMA-MF when λ > 1

∆ .
2) Modified Approach for Path Coupling: First, we define

the path metric (ρ) and a new modified path metric (ρ̃) in
terms of link activeness. For x, y ∈ S,

ρ(x, y) ,
∑
v∈V

1x(v)6=y(v) (16)

ρ̃(x, y) ,
∑
v∈V

1g[x(v)] 6=g[y(v)] (17)

We present a new approach for path coupling to obtain
the following results. Our approach utilizes the neighboring
configuration of links to construct a coupling between any
two initial states.

Theorem 1. [6] With q > 2∆, suppose that there are
two Markov chains {Xk} and {Yk} on S with the same
transition probability, but with possibly different initial states
distributions X0, Y0. If ∃α > 0, δ ≥ 0 such that the following
two conditions are satisfied:

1) There exists a coupling (X1, Y1) subject to

E[ρ̃(X1, Y1) | X0, Y0] ≤ (1− α)ρ̃(X0, Y0) (18)
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for any pair of X0, Y0 differing at only one link v ∈ V
(i.e., X0(v) 6= Y0(v)) and either X0(v) = 0 or Y0(v) =
0.

2) There exists a coupling (X1, Y1) subject to

E[ρ̃(X1, Y1) | X0, Y0] ≤ δ · ρ(X0, Y0) (19)

for any pair of X0, Y0 differing at only one link v ∈ V
(i.e. X0(v) 6= Y0(v)) and both X0(v) 6= 0 and Y0(v) 6=
0.

Then, for all (Xk, Yk) ∈ S2, there exists a coupling
(Xk+1, Yk+1) such that

E[ρ̃(Xk+1, Yk+1) | Xk, Yk] ≤(1− α)ρ̃(Xk, Yk)
+δ(∆ + 1)ρ(Xk, Yk)

(20)

Theorem 1 is specifically devised for hidden Markov chains.
Furthermore, with an extra condition, we can derive an upper
bound for the mixing time of hidden Markov chain {g[Xk]}
as follows.

Corollary 1. [6] Given a fixed ε > 0, if the two conditions of
Theorem 1 are satisfied and δ(∆+1)n

α ≤ ε
2 , then

t̄HM(ε) ≤ d
lnn− ln ε

2

α
e (21)

Using Corollary 1, we can establish sufficient conditions
for fast mixing of the throughput process of CSMA-MF, in
the regions of large q and λ (i.e. region 2 and 3 in Table I).

B. Reduction to multi-color Glauber dynamics

We note that directly applying coupling or modified ap-
proach of coupling on CSMA-MF cannot offer much insights
for region 4 to 6 in Table I. Therefore, we use another
approach. We relate the mixing time of CSMA-MF to that
of the specific type of multi-color Glauber dynamics, denoted
by t̄mcgd(ε) and show fast mixing of t̄mcgd(ε) in region 4 to
6.

We define a specific type of multi-color Glauber dynamics
related to CSMA networks, whose state transitions from Xk

to Xk+1 proceed as follows.
◦ Multi-color Glauber Dynamics:

1) We first uniformly randomly select a link v ∈ V .
2) The new state Xk+1 agrees everywhere with Xk except

possibly at v. Xk+1(v) = c̃ is updated with probability
pc̃ as follows.

pc̃ =


λ

1+(|A(Xk,v)|)λ , if c̃ ∈ A(Xk, v)
1

1+(|A(Xk,v)|)λ , if c̃ = 0

0 otherwise

By suitably defining a canonical path between these two
Markov chains, one can show,

Theorem 2. [6] On arbitrary conflict graph, if q > ∆ and
λ > 1 , we have

t̄csma(ε) ≤ t̄mcgd(ε)
2λ2q(1 + λq)

1 + (q −∆)λ

ln( 1
ε ) + n ln(1 + qλ)

ln 1
2ε

(22)

Therefore, whenever multi-color Glauber dynamics has fast
mixing time, CSMA-MF also has fast mixing time. In [6], we
characterize the sufficient conditions for fast mixing time for
multi-color Glauber dynamics by upper bounding t̄mcgd(ε).

V. NECESSARY CONDITIONS FOR FAST MIXING

To complete the story on characterizing the region for fast
mixing time of t̄csma

HM (ε), we also investigate the lower bound
of mixing time to obtain necessary conditions for fast mixing
of hidden Markov chains. We note that this study is non-
trivial because we cannot use the mixing time of a Markov
chain to obtain a lower bound for that of a hidden Markov
chain.Therefore, we develop new tools, for examples, by gen-
eralizing Cheeger’s constant to establish lower bounds. Given
H ⊂ g(S), with Q(Ã, B̃) ,

∑
x∈Ã

∑
y∈B̃ π(x)P (x, y), we

define the modified Cheeger’s constant as

Φ∗g−1(ε) = min
H⊂S|π(g−1(H))≤1−2ε

Q(g−1(H), g−1(Hc))

π(g−1(H))
(23)

We claim that the mixing time for the throughput process
is bounded below by,

Theorem 3. [6] t̄HM(ε) ≥ ε

Φ∗g−1(ε)
(24)

Applying this, one can show that for a complete bipartite
conflict graph when λ > 1 and q << ∆, t̄csma

HM ( 1
8 ) is

exponential in n. Hence, this corroborates with our simulation
results that temporal starvation can be severe if the number of
frequency channels is insufficient.

VI. CONCLUSION

We study the effect of number of frequency channels on
temporal starvation in general CSMA networks. We investigate
this via mixing time analysis of a hidden Markov chain.
This paper presents sufficient and necessary conditions for
fast mixing of the corresponding hidden Markov chain, which
allows us to understand the simulation observations.
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