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Abstract— A wireless relay with multiple antennas is called
a multiple-input-multiple-output (MIMO) switch if it maps its
input links to its output links using “precode-and-forward.”
Namely, the MIMO switch precodes the received signal vector in
the uplink using some matrix for transmission in the downlink.
This paper studies the scenario of K stations and a MIMO
switch, which has full channel state information. The precoder
at the MIMO switch is either a zero-forcing matrix or a network-
coding matrix. With the zero-forcing precoder, each destination
station receives only its desired signal with enhanced noise but
no interference. With the network-coding precoder, each station
receives not only its desired signal and noise, but possibly also
self-interference, which can be canceled. Precoder design for
optimizing the received signal-to-noise ratios at the destinations
is investigated. For zero-forcing relaying, the problem is solved
in closed form in the two-user case, whereas in the case of more
users, efficient algorithms are proposed and shown to be close to
what can be achieved by extensive random search. For network-
coded relaying, we present efficient iterative algorithms that can
boost the throughput further.

Index Terms—Beamforming, MIMO switching, network cod-
ing, relay, zero-forcing.

I. INTRODUCTION

RELAYS in wireless networks can extend coverage as
well as improve energy efficiency [1]. In this paper,

we study a setup in which multiple single-antenna stations
communicate with each other via a multi-antenna relay. In
each uplink slot, the stations simultaneously transmit, then in
the subsequent downlink slot, the relay precodes its received
signal by a certain matrix before broadcasting to the stations.
In the absence of noise, the multiple-input multiple-output
(MIMO) system between the transmitters and the receivers
can be viewed as a product of the downlink channel matrix,
the precoder and the uplink channel matrix. In this work, we
design a zero-forcing precoder so that the product channel
is a desired permutation matrix, which forms a one-to-one
mapping (or links) from the transmitters to the receivers.
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Hence the technique is called MIMO switching. We also
study a generalization referred to as network-coded precoding
where the off-diagonal elements of the channel matrix form a
permutation, and where the diagonal elements can be nonzero.
Such nonzero diagonal elements cause self-interference, which
can be fully canceled assuming the interference gains are
available at the receivers. We study how to design the precoder
to maximize the signal-to-noise ratios (SNRs) of the links.
To the best of our knowledge, this work is the first to

treat unicast non-pairwise switching patterns. Prior work that
investigates data exchange via a relay includes [1]–[6]. Refer-
ences [2], [4], [5] investigate the case of “full data exchange,”
in which all stations want to broadcast their data to all the
other stations. A slotted system with a single-antenna relay
is considered in [2] and the maximum throughput region is
evaluated. Data transmissions in [4], [5] can be summarized
as follows: In the first slot, all stations transmit to the relay
simultaneously; subsequent slots are devoted to downlink
transmissions; in each downlink slot, the relay multiplies the
signal received in the first time slot by a different precoder,
such that at the end of all downlink slots, all stations receive
the broadcast data from all the other stations. By contrast, the
framework investigated in this paper focuses on the unicast
bijection case, in which each source is linked to one distinct
destination and vice versa. Any general transmission pattern
(unicast, multicast, broadcast, or a mixture of them) among the
stations can be realized by scheduling a set of different unicast
bijection transmissions, as has been pointed out by the authors
in preliminary work [7]. A single-antenna relay with different
forwarding strategies is considered in [1], which studies both
full data exchange and “pairwise data exchange,” in which
stations form pairs to exchange data with each other only. It
is a special case of unicast switching studied here. Reference
[6] studies pairwise data exchange only, where the relay adopts
the decode-and-forward strategy. The diversity-multiplexing
tradeoff under reciprocal and non-reciprocal channels is also
analyzed.
In this paper, we consider both pairwise and non-pairwise

switching, in which a multi-antenna relay works in precode-
and-forward manner. We first study switching traffic among
the stations using a zero-forcing MIMO relay, where each des-
tination receives the desired signal with enhanced noise. We
then study more general network-coded relaying that exploits
physical-layer network coding to improve performance [8]–
[11]. For fairness, we study how to design the precoder to max-
imize the minimum received SNR among all stations, which is
referred to as the maxmin problem. Since the maxmin problem
is NP-hard, we use a semidefinite relaxation technique to
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Fig. 1. Wireless MIMO switching.

compute an approximate solution. The problem can be further
simplified if the required SNRs at all destinations are identical,
and we call this formulation the equal-SNR problem. We
derive conditions under which the maxmin and equal-SNR
problems are equivalent. We find that the throughput gap
between them is small, especially in the high SNR regime.
That is, our numerical results suggest that we can use the
equal-SNR problem to approximate the (NP-hard) maxmin
problem. Furthermore, we show that network-coded relaying
can noticeably improve the throughput performance over zero-
forcing relaying.
The remainder of the paper is organized as follows: Section

II introduces the scheme of wireless MIMO switching. In
Section III (resp. Section IV), the maxmin (resp. equal-SNR)
problem is investigated for both zero-forcing and network-
coded relaying. Section V presents the simulation results.
Section VI concludes this paper.

II. SYSTEM DESCRIPTION

Consider K stations, numbered 1, . . . , K , each with one
antenna, as shown in Fig. 1. There is no direct link between
any two stations and the stations communicate via a relay
with N antennas. The precode-and-forward scheme applies
under the condition of K ≤ N , where the relay has enough
degrees of freedom to switch all data streams at the same time.
We assume K = N throughout for simplicity. The analysis
essentially also applies to the case of K < N , where all
the matrix inverses in the paper shall be replaced by Moore-
Penrose pseudo inverses [12]. Each transmission consists of
one uplink symbol interval and one downlink symbol interval
of equal duration. In particular, the two symbol intervals are
two slots in a time-division system. The uplink symbol interval
is for simultaneous uplink transmissions from the stations
to the relay; the downlink symbol interval is for downlink
transmissions from the relay to the stations. Each round

of uplink and downlink transmission realizes a switching
permutation, as shall be described shortly.
Consider one transmission. Let x = [x1, · · · , xN ]T be

the vector representing the signals transmitted by the sta-
tions. Let y = [y1, · · · , yN ]T be the received signals at
the relay, and u = [u1, · · · , uN ]T be the noise vector with
independent identically distributed (i.i.d.) entries following
circularly-symmetric complex Gaussian (CSCG) distribution,
i.e., un ∼ Nc(0, γ2). Then

y = Hx + u, (1)

where H is the uplink channel gain matrix. The relay multi-
plies y by a precoding matrix G before relaying the signals.
In this paper, we assume that the uplink channel and downlink
channel are reciprocal, so that the downlink channel is HT .
Thus, the received signals at the stations in vector form are

r =HT Gy + w (2)

=HT GHx + HT Gu + w, (3)

where w is the noise vector at the receiver, with the i.i.d.
entries following CSCG distribution, i.e., wn ∼ Nc(0, σ2).
In the following, we describe two precoding schemes.

A. Zero-forcing Relaying

We refer to an N × N matrix P that has one and only
one nonzero element on each row and each column, which is
equal to 1, as a permutationmatrix. Evidently, Px is a column
vector consisting of the same elements as x but permuted in
a certain order depending on P . For example, if

P =

⎡
⎣0 0 1
1 0 0
0 1 0

⎤
⎦ ,

then P [x1, x2, x3]T = [x3, x1, x2]T . In the case where all di-
agonal elements of P are zero it is also called a derangement.
Suppose that the purpose of G is to realize a particular

permutation represented by the permutation matrix P , and to
amplify the signals coming from the stations. That is,

HT GH = AP , (4)

where A = diag{a1, · · · , aN} is an “amplification” diagonal
matrix. Each diagonal element is regarded as the gain of a
link. Accordingly, the precoder can be calculated as

G = H−T APH−1. (5)

Let the receivers compensate for the amplification to yield
received signals expressed collectively as:

r̂ = A−1r = Px + v, (6)

where the post-processing noise is expressed as

v = P H−1u + A−1w. (7)

Let us define

Q � I + γ2PH−1H−HP T . (8)
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Fig. 2. A traffic demand among three stations.

The covariance of the post-processing noise v is written as

E{vvH} =γ2P H−1H−HP T + σ2A−1A−H (9)

=Q − I + σ2A−1A−H . (10)

Suppose all uplink transmissions are independent and use
unit average power, i.e., E{x2

i } = 1, i = 1, · · · , N . The
problem is to design the precoder G to minimize the variance
of the post-processing noise subject to a power constraint for
the relay:

E{yHGHGy} ≤ p. (11)

For notational convenience, let the entries of an N × N
matrix S be given by

sij � Qji[(H
∗)−1H−T ]ij . (12)

From (1), the relay’s transmit power can be evaluated as

E[xHHHGHGHx + uHGHGu]

=Tr[GHHHGH + γ2GGH ] (13)

=Tr[H−T A(I + γ2PH−1H−HP T )AH(H∗)−1] (14)

=Tr[AQAH(H∗)−1H−T ] (15)

=aHSa, (16)

where we have used (5) and (8), and a = [a1, · · · , aN ]T is
the gain vector with the diagonal elements of A. The power
constraint on the relay is thus expressed as

aHSa ≤ p. (17)

B. Network-coded Relaying

The MIMO switch described in Section II.A makes use of
zero-forcing relaying, by which data are switched based on a
permutation matrix, whose diagonal elements are all zero. If
the kth diagonal element is nonzero, it means that the relay
forwards the signal from station k back to itself. There is no
need to force a diagonal element to zero because the self-
interference is known and can be removed. This is the basic
idea behind physical-layer network coding (PNC) [11], which
underlies many other works, e.g., [13]–[16].
In general, allowing PNC improves the performance. Even

though the self-interference costs the relay some energy,
removing the constraint on the diagonal of the derangement
enlarges the feasible set of the optimization problem, and
thereby yields a better optimal objective. This can also be
seen from an example of multi-way relaying, in which three
single-antenna stations communicate with the help of a three-
antenna relay. The traffic switching pattern among the three

y(j)

z(κ)

x(ı)

b′= bκ

b′′= bj + bκ

ã

b̃

c̃

Fig. 3. Assume the channel outputs of three users’ signal vectors: the back
vector b̃ is the desired signal; the red vector ã is the self-interference; the
blue vector c̃ is the other interference signal.

stations are defined in Fig. 2. The desired signal of station 1
is the black signal b; the red signal a is its self-interference;
the blue signal c is the other interference signal. We assume
the three signals and the channel gains are real-valued for
simpler illustration. A sketch of the three signals after passing
through the channel is shown in Fig. 3, i.e., ã, b̃ and c̃, which
are all three-dimensional vectors due to three antennas at the
relay. As shown in Fig. 3, we assume that c̃ is along x-axis;
ã is in xy-plane; and b̃ = bı + bj + bκ. In the case of zero-
forcing, the desired signal of station 1, b̃, should be projected
to z-axis, which is perpendicular to xy-plane spanned by the
two signals ã and c̃. In this way both the two interference
signals are zeroed out and we get a post-processing signal
b′= bκ. However, with network coding, we do not have to
zero out the self-interference. By dropping this constraint, we
only need to project the desired signal to the yz-plane which
is perpendicular to the interference signal c̃, then we obtain
the projected signal b′′= bj + bκ. Obviously, the projection
b′′ with network coding is stronger than b′ by zero-forcing.
With PNC, we rewrite (4) as

HT GH = A(P + B), (18)

where B = diag{b1, · · · , bN} is a diagonal matrix to be
determined.
As an example of a symmetric derangement, the corre-

sponding network-coding switch matrix has the pattern:

P 1 + B =

⎡
⎢⎢⎣

b1 0 0 1
0 b2 1 0
0 1 b3 0
1 0 0 b4

⎤
⎥⎥⎦ . (19)

This switching pattern corresponds to two pairwise data ex-
changes, in which stations 1 and 4 are one pair and stations
2 and 3 are the other pair. Hence, the network-coded MIMO
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switching can construct multiple parallel two-way relay trans-
missions. An example of asymmetric derangement may have
the following switch matrix:

P 2 + B =

⎡
⎢⎢⎣

b1 0 1 0
1 b2 0 0
0 0 b3 1
0 1 0 b4

⎤
⎥⎥⎦ . (20)

This generalizes the traditional physical-layer network coding
setting as presented in [11] because the data exchange is not
pairwise. For both symmetric and asymmetric switch matrices,
we shall refer to the corresponding matrices with nonzero
diagonal as network-coding switch matrix, and the associated
setup as MIMO switching with network-coded relaying.
Once the receivers compensate for the amplification and

remove self-interference, the resulting signals form this vector:

r̂ = P x + v′, (21)

where the post-processing noise v′ is expressed as

v′ = (P + B)H−1u + A−1w. (22)

The covariance of v′ is written as

E{v′v′H} = R − I + σ2A−1A−H , (23)

where

R � I + γ2(P + B)H−1H−H(P + B)H . (24)

The constraint of the relay power consumption is rewritten as

Ω(A, B)
� Tr[H−TA(R + BP T+ PBH + BBH)AH(H∗)−1](25)
= Tr[A(R + BP T+ PBH+ BBH)AH(H∗)−1H−T ](26)
≤ p. (27)

We have thus established another framework for MIMO
switching by network-coded relaying method, in which P +B
is a switch matrix. This framework can be generalized to the
case where the switch matrix realizes a general transmission
pattern. For example, if there are two nonzero non-diagonal
elements in a column of the switch matrix, then a multicast
connection is being realized within one switch matrix. In
fact, by scheduling a set of switch matrices, each realizing
a permutation, we can satisfy arbitrary user traffic patterns.

III. THE MAXMIN PROBLEM

In this section, we formulate a maxmin problem, in which
the minimum received SNR among all the stations is maxi-
mized. According to (9), the post-processing noise power of
receiver i is

εi = qi − 1 +
σ2

|ai|2 , (28)

where qi � Qii. Thus, the received SNR is 1/εi. Since
the system is half-duplex with uplink and downlink of equal
duration, the throughput achieved by Gaussian signaling is

ci =
1
2

log2

(
1 +

1
εi

)
, (29)

in bits per symbol period.
We first study the maxmin problem without PNC in Section

III.A, and then allow PNC in Section III.B.

A. Zero-forcing Relaying

Let ε denote the maximum post-processing noise power
among the stations. An optimization problem is formulated
as follows:

min
a

ε (30a)

s.t. |ai|2 ≥ σ2

ε + 1 − qi
, i = 1, · · · , N, (30b)

aHSa ≤ p, (30c)

ε ≥ 0. (30d)

Lemma 1: Every optimal solution for the optimization
problem (30) must satisfy the relay power constraint (30c)
with equality.

Proof: Let ã = [ã1, · · · , ãN ]T denote the optimal solu-
tion for the problem (30) with the optimal objective ε̃. Suppose
ã satisfies the constraint (30c) with strict inequality. Then
there exists τ > 0 such that

aHSa < p, (31)

for all a with |ai| ∈ (|ãi| − τ, |ãi| + τ), i = 1, · · · , N . Let
|ã′

i| = |ãi| + τ
2 , i = 1, · · · , N , and let

Ξi(ai) � qi +
σ2

|ai|2 . (32)

Then

Ξi(ã′
i) < Ξi(ãi), i = 1, · · · , N. (33)

Since each Ξi(ã′
i) is smaller than Ξi(ãi) for all i, the

maxmin objective becomes smaller with the solution ã′ =
[a′

1, · · · , a′
N ]T . Thus, ã is not the optimal solution, and

contradiction arises.
With this lemma, we could eliminate the feasible solutions

with which the relay’s power consumption is less than p.
Proposition 1: The maxmin problem1 (30) is equivalent

to the following quadratically constrained quadratic program
(QCQP),

min
a

aHSa (34a)

s.t. |ai|2 ≥ σ2

ε̃ + 1 − qi
, i = 1, · · · , N. (34b)

Proof: Let ã be an optimal solution of (30), and the
associated optimal objective is ε̃ ≥ 0. Note that ε̃ is the
maximum noise power for all i.
The solution ã satisfies (34b), where the largest noise power

among all i is equal to ε̃. Hence, ã is a feasible solution
of (34). According to Lemma 1, the power consumption of
the relay is ãHSã = p. Let â be an optimal solution of
(34). The power consumption of the relay can not be larger
than p, otherwise â is even worse than ã for (34). If the
power consumption of the relay âHSâ is strictly smaller than
p, then â is a feasible solution of (30), which is at least as
good as ã since the maximum noise power is not larger than
ε̃. That is, â is an optimal solution of (30). However, the

1Essentially, it is a minmax problem with respect to (w.r.t.) the post-
processing noise power. In this paper, we call it the maxmin problem w.r.t.
the received SNR to keep it consistent with the following equal-SNR problem
proposed in Section IV.
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power consumption âHSâ < p contradicts Lemma 1. Thus,
âHSâ = p. Furthermore, there is at least one constraint in
(34) in which equality holds for â, otherwise â is a better
solution for (30). We have proved the optimal solution of (30)
is also the optimal solution of (34), vice versa. Therefore, the
two problems are equivalent.
Proposition 2: The maxmin problem (30) is NP-hard in the

size of N when γ �= 0.
Proof: Problem (34) is equivalent to problem (2) in

[17], which has been proved to be NP-hard in general. Thus,
problem (30) is NP-hard as well. We do not repeat the steps
in [17].
We can use the semidefinite relaxation (SDR) technique

in [17] to find a throughput upper bound and a suboptimal
solution for (34). Let X = aaH , then (34) can be rewritten
as

min
X∈C

N×N ,�i

Tr[SX] (35a)

s.t. Tr[Ei � X] − �i =
σ2

ε̃ + 1 − qi
, (35b)

�i ≥ 0, i = 1, · · · , N, (35c)

X � 0, (35d)

rank(X) = 1, (35e)

where � denotes element-by-element multiplication, i.e., the
Hadamard product; X � 0 means the matrix X is symmetric
positive semidefinite;Ei is anN×N matrix, in which element
(i, i) is 1 and all the other elements are 0; �i, i = 1, · · · , N
are “slack” variables. If we drop the rank-1 constraint (35e),
problem (35) is in the standard form of a semidefinite pro-
gramming problem (SDP).

Overview of Our Approach to Maxmin Optimization Prob-
lem: We now overview the approach of our numerical in-
vestigation of the maxmin optimization problem. Although
we focus on zero-forcing relaying here, we use the same
approach for the study of maxmin optimization for network-
coded relaying as well after its corresponding formulation is
set up in Part B.
We recognize that it is difficult to solve the maxmin problem

(30). Therefore, we attempt to find its suboptimal solution. The
logical steps and the rationale for our approach to finding a
suboptimal solution are summarized below:

1) We have already proved that the maxmin problem is
equivalent to the QCQP (34). Unfortunately, solving for
the optimal solution of the QCQP is still difficult.

2) Fortunately, the SDR technique proposed in [17] can be
used to find a good suboptimal solution of the QCQP.
The technique consists of the following three steps:

a) Rewrite the QCQP as an optimization problem (35)
with a constraint of rank 1.

b) By dropping the constraint of rank 1, the problem
(35) is turned into a SDP. The optimal solution of
the SDP can be found by some toolboxes, such
as SeDuMi and SDPT3. Importantly, the optimal
objective of the SDP is an upper bound of that
of the QCQP, since the QCQP has one extra
constraint, i.e., the constraint of rank 1.

c) We then use the randomization technique in [17]
to approximate the optimal solution of the QCQP
based on the optimal solution of the SDP. With the
randomization technique, we get a result, which
satisfies the constraints of the QCQP, and this
result is at least a suboptimal solution of the QCQP.

In [17], the authors showed that the suboptimal solution
obtained as above can achieve an objective close to the
global optimum. As will be shown, our simulation results also
validate the near-optimality statement in [17].

Numerical Method (One-dimensional Search): As per the
discussion in the above overview, we use the suboptimal
solution of (35) to approximate the solution of (30). The
optimal solution of (30) is the value of ε̃ in (35), for which the
objective of (35), i.e., the minimum power consumption is p.
We solve for ε̃ by one-dimension search from max

j
qj −1, i.e.,

when the power consumption of the relay (35a) approaches
infinity. In each step of the search, ε̃ is increased by a small
amount δ̃. Given an ε̃, we can use SDP solvers to find the
minimum power consumption of the relay. When the step size
δ̃ is small enough, the first value of ε̃, for which the minimum
power consumption is p, is the solution (30).

B. Network-coded Relaying

The network-coded problem is formulated as

min
A,B

ε (36a)

s.t. Rii − 1 +
σ2

|ai|2 ≤ ε, i = 1, · · · , N, (36b)

Ω(A, B) ≤ p, (36c)

ε ≥ 0, (36d)

where R and Ω(A, B) are defined in (24) and (26), respec-
tively. In contrast to the previous problem of zero-forcing
relaying, the constraint of the relay power consumption (36c)
is quartic, making it more difficult than (30). We propose an
iterative algorithm, in which A and B defined in (18) are
optimized iteratively.
1) Optimize A for given B: Given B, problem (36) can

be formulated as (30) by redefining

sij � [R + BP T + PBH + BBH ]ji[(HT H∗)−1]ij ,
(37)

qi � Rii, (38)

Thus, the network-coded problem with fixed B can be solved
by the SDR technique, which is the same as solving (34).
2) Optimize B for given A: For ease of notation, let

M �AH(H∗)−1H−T A, (39)

N �I + γ2H−1H−H . (40)

The relay power consumption (26) is rewritten as

Ω(A, B) =Tr[(P + B)N(P + B)HM ] (41)

=Tr[BNBHM + BNP T M

+ MPNBH + PNP T M ]. (42)
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Constraint (36b) can be rewritten as
[
I + γ2(P + B)H−1H−H(P + B)H

]
ii
≤ ε − σ2

|ai|2 . (43)

Both the objective and the constraint w.r.t. B are inho-
mogeneous quadratic. To homogenize this problem, we let
b̃ = [bT , t]T , where b = diag{B}. Then the relay power
consumption (42) can be written as

[
bH t∗

] [
St f

fH 0

] [
b
t

]
+ Tr[PNP T M ]

� b̃
H

S̃b̃ + Tr[PNP T M ],

(44)

where St = NT � M , f = diag{MPN}, t = 1. Let
X̃ = b̃b̃

H
, then this problem can be homogenized as

min
X̃∈C

N×N ,�i

Tr[S̃X̃] (45a)

s.t. Tr[Ẽi � X̃] + �i (45b)

=
1
γ2

(
ε̃ − σ2

|ai|2
)
− 1 −

[
P (HHH)−1P H

]
ii

,

�i ≥ 0, i = 1, · · · , N, (45c)

Tr[ẼN+1 � X̃] = 1, (45d)

X � 0, (45e)

rank(X) = 1, (45f)

where Ẽi, i = 1, · · · , N , can be easily designed according to
(43). The last element of ẼN+1 is 1 and all the others are 0.
Thus, constraint (45d) is actually |t|2 = 1. The problem can
be solved in the same way as solving (35). Note that constraint
(45d) only requires the magnitude of t to be 1. Assume that
the solution of (45) is b̃opt = [b̂

T
, t̂]T , then b̃opte

jα, for all α
also guarantees the optimality of (45), since adding a phase
rotation does not change X̃ . Thus, the solution of this problem
is b̂e−j∠t̂.
To sum up the iterative algorithm, in order to design A and

B, we can first initialize A or B by any diagonal matrix.
Then we iteratively perform the two solvers to optimize A
and B until convergence.

IV. THE EQUAL-SNR PROBLEM

In this section, we require the received SNR at all stations to
be identical and find its maximum of the equal-SNR problem.
Such a formulation was first investigated in [7]. The equal-
SNR requirement not only guarantees perfect fairness, but also
allows more efficient computation.

A. Zero-forcing Relaying

The optimization problem is formulated as

min
a

ε (46a)

s.t. |ai|2 =
σ2

ε + 1 − qi
, i = 1, · · · , N, (46b)

aHSa ≤ p, (46c)

ε ≥ 0. (46d)

The only difference between the equal-SNR problem and the
maxmin problem (30) is that the inequality (30b) is replaced

by the equality (46b). In [18], we only provided suboptimal
solutions. In this paper, we will investigate optimal solutions
and propose analytical and numerical suboptimal solutions.
As has been proved in [18], the equal-SNR problem is fea-
sible. Another property is that the solution of the equal-SNR
problem is feasible for the maxmin problem, since constraint
(30b) of the maxmin problem has a larger possible set than
constraint (46b) in the equal-SNR problem. Thus, the optimal
objective of (46) can not be smaller than that of (30).
Proposition 3: If no additional noise is introduced at the

switch, then the optimal solution of (30) is such that each
station has exactly the same post-processing noise power. That
is, in this case, the two optimization problems (30) and (46)
are equivalent.

Proof: As proved in Proposition 2, the optimization
problem (34) is equivalent to (30). When γ = 0 in (34),
qi = 1 for all i = 1, · · · , N . The objective can be rewritten
as

∑N
i=1 sii|ai|2. The optimal solution of a is obvious, and it

satisfies |ai|2 = σ2

ε̃−1 . That is, for the optimal solution of (30),
each station has equal post-processing ε̃.
Thus, we can use the solution of the equal-SNR problem

to approximate that of the maxmin problem in the high SNR
regime. The gap will be evaluated numerically in Section V.

Optimal Solution in the Case of Two Stations
In order to minimize the post-processing noise power ε,

we should try to maximize |a1| and |a2|. Given any ε, the
amplitudes |a1| and |a2| can be calculated by the equal noise
power constraint. Then we should find their optimal phases to
minimize the relay power consumption.
If N = 2, the power constraint of the relay in (46c) can be

expanded as

aHSa = s11|a1|2 + s22|a2|2 + s21a1a
∗
2 + s12a

∗
1a2, (47)

where s11 ≥ 0, s22 ≥ 0, and s12 = s∗21. By the definition of
S in (12), s12 = s21 ≥ 0. Formula (47) can be written as

aHSa =
∣∣∣∣√s11a1 +

s12√
s11

a2

∣∣∣∣
2

+
(

s22 − s2
12

s11

)
|a2|2. (48)

Since in (48) only
∣∣∣√s11a1 + s12√

s11
a2

∣∣∣ is related to the phases
of variables a1 and a2, the global minimum is achieved by
real-valued a1 and a2 with opposite signs. Without loss of
optimality, assume a1 ≥ 0 and a2 ≤ 0. Then the power
consumption constraint can be simplified as

aT Sa = s11a
2
1 + 2s12a1a2 + s22a

2
2. (49)

According to the equal noise power constraint (46b), we have

a2 = − σ√
q1 − q2 + σ2

a2
1

. (50)

Plugging (50) into the power constraint, we have a biquartic
equation (51),

0 =s2
11q

2
δa8

1 + 2qδ[s2
11σ

2 + s11s22σ
2 − s11pqδ

− 2s2
12σ

2]a6
1 + [σ4(s11 + s22)2 + p2q2

δ

− 2pσ2qδ(2s11 + s22) − 4s2
12σ

4]a4
1

+ [2p2σ2qδ − 2pσ4(s11 + s22)]a2
1 + p2σ4,

(51)



1458 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 8, SEPTEMBER 2012

where qδ = q1− q2. Since the equal-SNR problem is feasible,
there exists solutions for (51). In order to maximize a1 and
a2, the largest real root of (51) is the optimal solution of a1,
which admits an analytical solution [19]. Consequently, a2 can
be calculated by (50).
Alternatively, after we deduce that a1 and a2 have opposite

signs, the one-dimensional search in Section III.A can be used
to solve the problem as well. Thus, we have solved the equal-
SNR problem of (46) in the case of N = 2.
It is not difficult to see that letting the two user signals

take opposite signs (phases) minimizes the relay power con-
sumption. The optimal solution of the maxmin problem when
N = 2 also has the opposite-phase property. As we shall
see, in the case of more than two users with users forming
pairs, assigning each pair of users opposite phases is an
effective scheme. Thus, in general the opposite-phase setting
is effective for pairwise transmission in any problem which
needs to minimize the relay power consumption, including
the preceding maxmin problem.

Suboptimal Solution in the Case of N > 2
If there are more than two stations, we propose a suboptimal

solution to (46). The vector a consists of arbitrary complex
numbers. Given ε, one can obtain |aj| from (46b). Let the
phases θj = ∠aj , j = 1, · · · , N , be fixed. We solve (46)
to obtain the minimum noise variance ε(θ1, · · · , θN ), which
satisfies aHSa = p.
We now consider the general case of complex-valued a.

With the numerical method of one-dimensional search, the
optimization of aj’s amplitudes and phases can be decoupled.
There exists an ε such that aHSa = p. Denote such an ε by
ε(θ1, · · · , θN) since in each step we regard the amplitudes as
constant values. It then suffices to solve for

ε∗ = arg min
θ1,··· ,θN

ε(θ1, · · · , θN ). (52)

In the following we provide two suboptimal algorithms for
(46) via (52).

Non-PNC Random-phase Algorithm: In (52), we note that ε
is a complicated nonlinear function of θj . A time-consuming
exhaustive search can be used to find the solution to (52). To
reduce the computation time, we find the best set of phases
over a randomly generated candidates in lieu of an exhaustive
search. We call this the random-phase algorithm. We divide
the interval of [0, 2π) equally into M bins with the values
of 0, 2π

M , · · · , 2(M−1)π
M respectively, and we randomly pick

among them to set the the value of θj for each and every
j = 1, · · · , N . After that, we compute the corresponding
ε(θ1, · · · , θN) by solving (46b) and (46c). Given an ε, substi-
tuting it into (46b) yields |aj | for all j. We perform L trials
of these random phase assignments to obtain L phase vectors
of (θ1, · · · , θN ). Calculating the relay power consumption by
(46c), we choose the phase vector using the least power among
the L candidates as our approximated phase solution. By one-
dimensional search, the estimated ε∗ can be achieved when the
least power consumption of the relay is p. Accordingly, we can
calculate |aj | for all j with the estimated ε∗, then a with the
approximated phase solution. Hence, G can be calculated by
its definition (5). This best-out-of-L-trials feasible solution is

in general larger than the actual optimal ε∗. In Section V, we
will show that large gains can be achieved with only small M
and L. Moreover, increasingM and L further yields very little
improvement, suggesting that the estimated ε∗ with small M
and L is close to the result achieved by an extensive search.

Non-PNC Opposite-phase Algorithm: Recall that in the case
of N = 2 the solution has a1 and a2 with opposite signs,
or in general the minimum power consumption is achieved
with a1 and a2 being complex numbers with opposite phases,
i.e., θ1 = θ2 + π. For large even number of N , consider the
situation in which the transmissions are pairwise. The stations
form pairs, and two stations in a pair exchange data with each
other only. Assume that station pair � consists of stations π(�)
and κ(�). Define

[
h�1h�2

h∗
�2h�3

]
�

[
[(HHH)−1]π(�),π(�) [(H

HH)−1]π(�),κ(�)

[(HHH)−1]κ(�),π(�) [(H
HH)−1]κ(�),κ(�)

]
(53)

where h�1 ≥ 0, h�3 ≥ 0, h�2 ∈ C. The post-processing noise
power can be factorized in terms of b�1 and b�2 as follows:

ε =γ2h�3 +
σ2

|a�1|2 (54)

=γ2h�1 +
σ2

|a�2|2 . (55)

The relay power consumption can be written as

Ω1(a) =γ2O1(a) +
N/2∑
�=1

{∣∣∣a�1 + γ2 |h�2|2 a�2

∣∣∣2

+
(
h�1 + γ2h�1h�3 − 1

) |a�1|2

+
(
h�3 + γ2h�1h�3 − γ4|h�2|4

) |a�2|2
}

,

(56)

where the summation consists of the inner-pair quadratic items
of a, and O1(a) denotes the sum of the quadratic items of
a across pairs, e.g., aiaj where i, j from different pairs. For
fixed amplitudes of a�1 and a�2, it is obvious that the phase
vector (θ1, · · · , θN ) that minimizes (56) is the optimal phase
vector of (46). We could let two stations of a pair to have
opposite phases to lower the inner-pair part of (56). Simulation
results indicate that as long as the relative phase is π within a
pair, the throughput performance remains essentially the same
regardless of the phase differences between different pairs.
Thus, to simplify the problem we use real numbers for the
elements of a. The amplitudes are calculated in the same way
as that of the non-PNC random-phase algorithm.

Remark 1: The opposite-phase solution approaches the op-
timal solution of the equal-SNR problem as SNR increases,
since γ2O1(a) becomes negligible. Thus, the opposite-phase
solution approaches the optimal solution of the maxmin prob-
lem as well according to Proposition 3.
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B. Network-Coded Relaying

The optimization problem is formulated as

min
A,B

ε (57a)

s.t. Rii − 1 +
σ2

|ai|2 = ε, i = 1, · · · , N, (57b)

Ω(A, B) ≤ p, (57c)

ε ≥ 0. (57d)

The only difference between the equal-SNR problem and the
maxmin problem (36) is that the inequality (36b) is replaced
by the equality (57b). A proposition for the network-coded
problem can be proved in the same way as Proposition 3.
We then use the solution of the equal-SNR problem (57) to
approximate that of the maxmin problem (36) at high SNR.
The gap will be also evaluated in Section V.

PNC Identical-b Random-phase Algorithm simplifies the
matter by introducing an extra constraint: B = bI, where b is
a real scalar. We set a range for searching b. For each trial of b,
we use essentially the same method as the non-PNC random-
phase algorithm proposed in Section IV.A to find the phases
θj of aj and ϕj of bj , and find the corresponding estimated
ε∗ as well. We then find b that yields the least post-processing
noise power. The beamformer G can be calculated from P ,
|aj |, b, θj and ϕj .

PNC Phase-aligned Algorithm: Consider pairwise transmis-
sion, i.e., the case of N being an even number. Define

B� �
[

b�1 0
0 b�2

]
, (58)

where b�1 and b�2 are the diagonal elements π(�) and κ(�)
of B�, respectively. The post-processing noise power can be
factorized in terms of b�1 and b�2 as follows:

ε = γ2h�1

∣∣∣∣b�1 +
h∗

�2

h�1

∣∣∣∣
2

− γ2|h�2|2
h�1

+ γ2h�3 +
σ2

|a�1|2 (59)

= γ2h�3

∣∣∣∣b�2 +
h�2

h�3

∣∣∣∣
2

− γ2|h�2|2
h�3

+ γ2h�1 +
σ2

|a�2|2 . (60)

This formula shows the potential advantage of introducing b�1

and b�2, i.e., the application of physical-layer network coding.
If we set b�1 and b�2 as

b�1 = −h∗
�2

h�1
, b�2 = −h�2

h�3
, (61)

the post-processing noise power can be minimized in terms of
b�1 and b�2. The relay power consumption can be written as

Ω2(A) = γ2O2(A) +
N/2∑
�=1

{
|a�1 + λ�a�2|2

+
(

h�1 +
|h�2|2
h�1

− γ2|h�2|2 + γ2h�1h�3 − 1
)
|a�1|2

+
(

h�3 +
|h�2|2
h�3

− γ2|h�2|2 + γ2h�1h�3 − λ2
�

)
|a�2|2

}
,

(62)

where

λ� = |h�2|2
[
γ2

( |h�2|2
h�1h�3

− 1
)
− 1

h�1
− 1

h�3

]
.

Note that O2(A) denotes the sum of the quadratic items of A
across pairs. SinceH−1H−H is positive semidefinite, we can
prove |h�2|2 ≤ h�1h�3, then λ� < 0. Thus, for fixed amplitudes
of a�1 and a�2, the inner-pair part of (62) can be lowered
when the phases of a�1 and a�2 are aligned, e.g., a�1, a�2 ≥
0. Simulation results indicate that as long as the phases of
A’s diagonal elements are aligned within pairs, the throughput
performance is not sensitive to the phase differences among
different pairs.
Remark 2: Note that the phase-aligned solution is the op-

timal solution of the maxmin problem (36) when the noise
level at the relay is zero. The result is obvious after setting γ
to 0 in (36).
In summary, Remarks 1 and 2 show that when the noise

at the relay is small, the opposite-phase solution approaches
optimal for non-PNC case and the phase-aligned solution
approaches optimal for the PNC case. Our simulation results
validate this conclusion.

V. NUMERICAL RESULTS

In this section, we evaluate the throughputs of various
designs of MIMO switches. We assume the maximum transmit
power of the relay and every station are the same (thus p = 1),
and the noise level at the relay and the stations is the same. Our
simulation indicates that the system throughputs are roughly
the same with different symmetric permutations. The same
result can be concluded for asymmetric permutations. Thus,
we use one permutation for each of them (P 1 and P 2 are
given by the matrices described in (19) and (20) with the
diagonal elements set to 0) in simulations.

Observation 1: For equal-SNR zero-forcing (i.e., non-PNC)
relaying, the optimal setting for the case of two stations (N =
2) has the property that the two elements of a have opposite
signs. In general, the non-PNC opposite-phase algorithm is an
effective scheme for pairwise transmission with larger even
number of stations.
A similar framework as ours is investigated in [20], which

focuses on optimizing the sum rate of all stations. Therein,
a suboptimal beamforming scheme is proposed, which also
uses zero-forcing detection and zero-forcing precoding, and
simply uses a positive scalar weight to control the relay
power consumption instead of our diagonal A. We regard this
scheme as a benchmark and call it “the basic scheme.” All
schemes proposed in this paper have an advantage over the
basic scheme in that they guarantees fairness.
Compared with the basic scheme in Fig. 4, the optimal

setting of N = 2, i.e., the non-PNC opposite-phase algorithm
proposed in Section IV.A achieves more than 0.6 dB gain in
the low SNR regime. The gain becomes smaller as the SNR
increases, e.g., around 0.25 dB gain at the SNR of 15 dB.
We explain why the gain diminishes for high SNR as follows.
When the relay noise power is zero, |a1| = |a2|. In this case,
s12 becomes 0 in (48). Then the throughput performance does
not depend on the phase difference of a1 and a2. The opposite-
sign setting is equivalent to the identical-gain setting, i.e., the
basic scheme. Thus, the gain over the basic scheme becomes
trivial in the high-SNR regime.
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non−PNC maxmin (optimal)
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PNC phase−aligned
PNC SDR iteration

Fig. 4. Throughput comparison of different relaying schemes in the case of
two stations.

Fig. 5 presents the throughput in the case where N = 4
stations form two pairs for pairwise transmission. The through-
puts are roughly the same when we vary the phase differences
of the pairs while keeping the phase difference within each
pair to π. (Experimentation with the phases is not shown in
Fig. 5 to avoid cluttering.) With this result, we could set the
elements of a such that one element in each pair is positive
and the other element is negative. The results are similar to that
of N = 2. The non-PNC opposite-phase algorithm achieves
0.8 dB gain in the low SNR regime and 0.25 dB gain over
the basic scheme in the high SNR regime.

Observation 2: For equal-SNR relaying, physical-layer net-
work coding can be applied as a relaying method to improve
throughput performance significantly. For pairwise transmis-
sion, the PNC phase-aligned algorithm achieves significant
gains over any other non-PNC scheme of zero-forcing relay-
ing.
Simulation results on the PNC phase-aligned scheme are

also presented in Fig. 4 and Fig. 5. When we apply physical-
layer network coding in our MIMO switching, significant
gains can be achieved over other schemes. The proposed
PNC phase-aligned scheme outperforms all the other non-
PNC schemes. Note in particular that compared with the
basic scheme, it does not involve complicated calculations
during the one-dimensional search of A and the setting of B.
However, the PNC phase-aligned scheme can not be applied
to non-pairwise transmissions.

Observation 3: For equal-SNR zero-forcing relaying with
the non-PNC random-phase algorithm, the simulation results
indicate that large gains can be achieved with a small number
of phase bins and trials. For network-coded relaying, the
PNC identical-b random-phase algorithm can be applied for
both pairwise and non-pairwise transmissions to achieve the
network coding gain. It is worth mentioning that network
coding helps not only for the traditional pairwise switching
pattern but also for the non-pairwise pattern.
In Figs. 4 and 5, when M = 8 and L = 10, the non-PNC
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Fig. 5. Throughput comparison of different relaying schemes for pairwise
switching pattern in the case of four stations.

random-phase scheme proposed in Section IV.A can achieve
good enough throughput performance. With the PNC random-
phase algorithm proposed in Section IV.B, the throughput
performance is even better than that of the best non-PNC
scheme. For M = 8, it achieves around 1.2 dB gain with
L = 10 and 1.4 dB with L = 100 compared to the basic
scheme in the case of two stations; it can achieve around 1.5
dB and 2 dB gains with 10 and 100 trials, respectively, over
the basic scheme in the case of four stations. However, it needs
larger M , L and more random trials to perform as good as
the PNC phase-aligned scheme.
Consider the non-pairwise transmission in Fig. 6. Note that

the non-PNC opposite-phase scheme and the PNC phase-
aligned scheme can not be applied to non-pairwise trans-
missions. The non-PNC random-phase scheme and the PNC
random-phase scheme can still outperform the basic scheme.
ForM = 8, when L = 10 the non-PNC random-phase scheme
could achieve around 0.15 dB gain. The PNC random-phase
scheme could achieve around 1.1 dB and 1.3 dB gains over
the basic scheme with 10 and 100 trials, respectively.

Observation 4: In general, for zero-forcing (i.e., non-PNC)
relaying, the throughput of the maxmin problem is larger than
that of the equal-SNR problem. However, the throughput gap
between the equal-SNR problem and the maxmin problem is
small over a wide range of SNR.
We first evaluate the throughput performances with two

stations. An interesting question is how large is the throughput
gap between (30) and (46) corresponding to their optimal noise
powers. In Fig. 4, the throughput gap between the two curves
is very small. Note that the optimal solutions of the maxmin
problem are found by exhaustive search. In Table I, the gap
is evaluated over a wide range of SNR. The results indicate
that the gap is less than 0.1% for the SNR regime from 0 to
30 dB.
In the case of four stations, the exhaustive search for solving

the maxmin problem becomes computationally expensive.
Therefore, we use the upper bound of the maxmin problem
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TABLE I
WORST-STATION THROUGHPUTS OF THE MAXMIN PROBLEM (EXHAUSTIVE SEARCH & SDR) AND THROUGHPUTS OF THE EQUAL-SNR PROBLEM

(NON-PNC OPPOSITE-PHASE & PNC PHASE-ALIGNED ALGORITHMS) WHEN N = 2; Δ DENOTES THE VARIATIONAL RATIO W.R.T. THE EQUAL-SNR
SOLUTION OF EITHER NON-PNC OPPOSITE-PHASE OR PNC PHASE-ALIGNED ALGORITHMS, RESPECTIVELY.

Non-PNC PNC

SNR Equal-SNR Maxmin Equal-SNR Maxmin

(dB) Opposite-phase Optimal/Δ(%) SDR/Δ(%) Phase-aligned SDR/Δ(%)

0 0.1270 0.1271 / 0.08 0.1270 / -0.00 0.2305 0.2363 / 2.52
10 0.7990 0.7994 / 0.05 0.7987 / -0.03 1.2091 1.2264 / 1.43
20 2.1249 2.1256 / 0.03 2.1202 / -0.22 2.7250 2.7549 / 1.10
30 3.7075 3.7083 / 0.02 3.6864 / -0.57 4.3762 4.4016 / 0.58

TABLE II
WORST-STATION THROUGHPUTS OF THE MAXMIN PROBLEM (SDR UPPER BOUND & SDR) AND THROUGHPUTS OF THE EQUAL-SNR PROBLEM

(NON-PNC OPPOSITE-PHASE & PNC PHASE-ALIGNED ALGORITHMS) WHEN N = 4; Δ DENOTES THE VARIATIONAL RATIO W.R.T. THE EQUAL-SNR
SOLUTION OF EITHER NON-PNC OPPOSITE-PHASE OR PNC PHASE-ALIGNED ALGORITHMS, RESPECTIVELY.

Non-PNC PNC

SNR Equal-SNR Maxmin Equal-SNR Maxmin

(dB) Opposite-phase SDR-Upper/Δ(%) SDR/Δ(%) Phase-aligned SDR/Δ(%)

0 0.0661 0.0720 / 8.85 0.0720 / 8.85 0.1266 0.1376 / 8.69
10 0.5504 0.5562 / 1.05 0.5552 / 0.87 0.8842 0.9018 / 1.99
20 1.7314 1.7328 / 0.08 1.7302 / -0.08 2.3302 2.3435 / 0.57
30 3.2906 3.2918 / 0.04 3.2818 / -0.27 3.9611 3.9734 / 0.31

calculated by the SDR scheme for benchmarking instead.
Generally, the throughput gap between the equal-SNR and the
upper bound is small, and becomes even smaller in the high
SNR regime in Fig. 5 and Table II. Since we use the upper
bound for the maxmin solution for benchmarking, we conclude
that the throughput gap between the maxmin problem and the
equal-SNR problem is also small.
Therefore, the maxmin problem can be well approximated

by the equal-SNR problem. We note that the trend as indicated
by the simulations results in Fig. 4, Fig. 5, Table I and Table
II is consistent with the analytical result of Proposition 3. In
the high SNR regime, the noise becomes negligible, and the
gap between equal-SNR and maxmin diminishes.

Observation 5: The throughput of the equal-SNR problem
is roughly the same as the approximate throughput of the
maxmin problem achieved by the SDR technique for pairwise
switching pattern. However, for the non-pairwise pattern, the
SDR technique achieves good throughput performance for
both non-PNC and PNC relaying schemes.
With reference to Table I and Table II for pairwise switching

pattern, for zero-forcing relaying our non-PNC opposite-phase
algorithm is better than the SDR scheme in the high SNR
regime, and for network-coded relaying the SDR scheme is
better than our PNC phase-aligned algorithm. However, the
gap is mostly smaller than 2% for SNR larger than 0 dB.
For the non-pairwise switching pattern, the random-phase

scheme is close to the SDR upper bound for the non-PNC
relaying. However, for the PNC relaying, the iterative SDR
scheme outperforms the PNC identical-b random-phase al-
gorithm since the latter needs more trials to achieve better
throughput performance.
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Fig. 6. Throughput comparison of different relaying schemes for non-
pairwise switching pattern in the case of four stations.

The overall implications of our analytical and simulation
results are as follows. The equal-SNR scheme, with the
target of achieving perfect fairness among the links, is also
a good approximation to the maxmin problem when the relay
noise is small. Given a symmetric switch matrix that realizes
pairwise transmissions, we could use the non-PNC opposite-
phase algorithm or the non-PNC random-phase algorithm for
zero-forcing relaying, and the PNC phase-aligned algorithm
or the PNC identical-b random-phase algorithm for network-
coded relaying, to identify a suitable gain vector. The PNC
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phase-aligned algorithm has good throughput performance as
well as fast execution time. Given an asymmetric switch
matrix that realizes non-pairwise transmissions, we could use
the random-phase algorithm for zero-forcing relaying and
network-coded relaying to identify a suitable gain vector.
The SDR scheme also achieves good throughput performance;
however, its complexity is generally higher than the equal-
SNR schemes.

VI. CONCLUSION

We have proposed a framework for wireless MIMO switch-
ing to facilitate communication among multiple wireless
stations. With optimized precoders, network-coded relaying
improves the throughput performance significantly over non-
network-coded relaying.
The maxmin solution and the equal-SNR solution have their

respective advantages. The former yields better throughput
performance. However, the equal-SNR solution guarantees
perfect fairness. With the equal-SNR solution, MIMO switch-
ing can be easily extended to multiple transmissions, by
which general transmission patterns can be realized, including
unicast, multicast, broadcast, or a mixture of them [18].
Moreover, the maxmin problem is NP-hard, which is solved
using exhaustive search. Even approximating it with the SDR
scheme using interior point methods has the complexity cost
of O(N7) [17]. However, the proposed schemes for the equal-
SNR problem has the complexity cost of O(N3) only, induced
mainly by calculating matrix inverses. Hence, the equal-SNR
setting is perhaps more amenable to practical deployment.
In future work, it will be interesting to explore switch

matrices that realize more complicated patterns than unicast. It
would also be interesting to study the case where the number
of antennas at the relay is fewer than the number of stations.
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