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Robust Convergence of Low-Data
Rate-Distributed Controllers

Wing Shing Wong and Chi Wan Sung

Abstract—This note is focused on control systems in which the observer
is not co-located with the controller and the communication channel be-
tween them is of limited bandwidth. Due to the low data rate requirement,
the control law must be of simple form. As a result, a tristate distributed
controller is examined. The control algorithm is proven to be convergent if
the system structure satisfies certain technical conditions. The convergence
is robust in the sense that the system parameters and even the structure of
the underlying system dynamics need not to be completely known.

Index Terms—Communication constaints, distributed controllers, per-
formance-target tracking, robust convergence.

I. INTRODUCTION

Many challenging control problems in networking and communica-
tion systems can be cast in the framework of controlling a complex
system with a large number of decision-makers distributed over a wide
area. Examples that readily come to mind include the power control
problem in wireless communication (see, for example, [12], [23], and
[31]) and the congestion control problem in the Internet (see, for ex-
ample, [10] and [17]).

Although the application nature of these problems may vary, they all
have three quintessential aspects, which in our view make them also
interesting from a theoretical point of view. First of all, the distributed
nature of the system implies that observation information is highly dis-
tributed and the decision-makers have to determine their control in a
distributed manner, based on limited, partial information. Secondly,
since the observer, decision-maker, and physical controller are not nec-
essarily co-located, measurement data and control information need to
be communicated over a data network. In order not to impose a heavy
overhead demand, it is desirable to design algorithms that require low
communication data rate. Finally, in many of these systems, system
parameters and even the structure of the underlying dynamics may not
be known or are at best only partially known. As a result, the control-
ling algorithms are required to be robust so that errors in knowledge
about system parameters or structures do not seriously affect algorithm
performance.

In this note, we consider a class of problems that deals with perfor-
mance-target tracking. Our motivation comes from power control prob-
lems in wireless communication. However, these models also occur
in other application contexts involving multiple distributed users such
as a peer-to-peer network. A class of distributed feedback control al-
gorithms, called tristate algorithms, is proposed. These algorithms are
closely related to relay feedback (see, for example, [11] and [15]) and
require only one ternary symbol for coding the control decision. Our
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Fig. 1. Schematic of a cellular network.

objective is to ensure performance functions of the system be controlled
within a pre-assigned target range. Hence, the objective bears some re-
semblance to output regulation, in particular robust regulation, (see, for
example, [4], [9], [13], [14], and [16]), but without disturbances and
with trivial system dynamics.

It should be pointed out that our work differs from these classical
results in two major aspects. First of all, in our model the information
structure and the control decisions are highly distributed. Each player
only sees its individual set of observations and there is no direct co-
ordination among users. Second, although the underlying dynamics of
our model is basically trivial, the structure of the performance func-
tions can be quite general and is not completely known. As a result,
exact nature of the interaction among users is only known to the in-
dividual users through output measurements. This precludes much of
the detailed analysis approach used in classical results. Due to the dis-
tributed nature of users, we further assume that individual output has
to be coded and transmitted over a low speed data channel to its cor-
responding user for decision-making. This last aspect makes connects
between this work and other research work on low data rate controllers,
discussed in [2], [5], [28], and [29], as well as with more recent work
on the subject such as [1], [3], [6], [7], [19], [21], and [26]. Note that,
instead of examining the relationship between data rate and stability or
related issues, our goal here is to examine properties of a specific class
of feedback control algorithms with low data rate property.

Specifically, in this note we show that a tristate algorithm converges
if the output functions satisfying both a Lipschitz condition as well
as a dominant-diagonal-like condition. System parameters need not be
known to the distributed controllers. In a sense, this class of algorithms
is robust by allowing uncertainty in the system structure (see [30] for
the issue of uncertainty allowed by feedback). This is a desirable prop-
erty for many wireless network and Internet control problems, where
it is not cost effective or simply infeasible to perform detailed system
parameter estimates.

II. MOTIVATION FROM THE POWER CONTROL PROBLEM

The performance-target-tracking problem is modeled after the
Quality-of-Service (QoS) tracking problem in wireless communica-
tion [8]. Consider a cellular network consisting of M mobile units
distributed over L cells as depicted in Fig. 1. Each mobile unit intends
to communicate with the base station controlling the cell to which
it belongs. The communication channels are usually duplex, that is,
bidirectional. For simplicity, we will focus on the uplink channel, that
is, the communication channel from mobile units to the base stations.
Due to propagation characteristics of the electromagnetic wave, the
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signal received for each communication channel is corrupted by
interference noises coming from other mobile units.

Let Gij represent the channel gain between the jth transmitter and
the base receiver of the cell to which user i belongs. Note thatGij > 0.
Define the M -by-M channel gain matrix by G = (Gij), (we use the
convention that bold face denotes vectors or matrices). Mathematically,
we can represent the quality of a channel by the signal-to-noise ratio
defined by

�i(p) =
Giipi

j 6=i

Gijpj + �i
(2.1)

where p = (p1; . . . ; pM) denotes the power vector and ��� =
(�1; . . . ; �M) denotes the thermal noise vector; both of them are
nonnegative. (For vector x, x � 0 if and only if all components of x
are nonnegative).

Notice that in this model, the observer, the base station measuring the
signal-to-noise ratio and the controller, the mobile unit, are not co-lo-
cated. Hence, a communication channel is needed between the observer
and the controller.

Given a set of QoS targets, defined by signal-to-noise ratio levels,

i, the objective of the target-tracking problem is to adjust the vector
p to satisfy the goal

�i � 
i (2.2)

for all i. If the channel gain matrix and the noise vector are completely
known, the problem can be easily solved by classical theory of non-
negative matrices (see, for example, [22]). However, this classical re-
sult cannot be used to provide a robust and decentralized algorithm
to the target-tracking problem because it assumes that a central de-
cision-maker knows the channel gain matrix, computes the solutions
and conveys to all the mobile units. In fact, it is almost impossible to
know the exact value of the gain channel. Moreover, due to physical
phenomena known as fading effects, the gain matrix behaves as a sto-
chastic process, so any parameter identification has to be a continuous
process.

In [8], Foschini and Miljanic proposed an algorithm that does not
require any information on the value ofG. Furthermore, the algorithm
is distributed in the sense that in order to update its power level, each
mobile unit only needs to communicate with its base station indepen-
dently. The only information needed is its latest signal-to-noise ratio.
This algorithm and its asynchronous version [18] provide a more prac-
tical approach for the target-tracking problem in regard to our stated
criterions. However, a major shortcoming, due to the requirement of
updating based on precise signal-to-noise ratios, is that a high data rate
communication channel between the base station and the mobile unit
is needed. Inevitably, it is necessary to quantize the observation data.
The granularity of quantization levels is closely tied with the commu-
nication data rate requirement and fundamentally affects the conver-
gence issue. In [24], Sung and Wong proposed a quantized version of
the Foschini–Miljanic algorithm that requires only 1 ternary symbol of
data per unit cycle per mobile unit. The tristate algorithm is simple to
describe

p
(n+1)
i =!(p(n); 
i) =

�p
(n)
i �

(n)
i < ��1
i

��1p
(n)
i �

(n)
i > �
i

p
(n);
i otherwise

p
(0)
i = initial power setting: (2.3)

Here, p(n) = p
(n)
1 ; . . . ; p

(n)
N and � > 1 represents the basic mul-

tiplicative quantization unit of the power levels. That is, for user i the
power level is of the form p

(0)
i �n, for some integer n. For this problem,

the following convergence property was established.

Theorem 1 [24]: Suppose there exists a positive vector p that sat-
isfies (2.2). Given any positive initial point, algorithm (2.3) converges
to a solution, p̂ with the property

�
�1

i � �i(p̂) � �
i: (2.4)

We call the region between ��1
i and �
i the output convergence zone.
One can construct a bi-state algorithm (relay feedback) by removing
the output convergence zone. In this case, the algorithm will not con-
verge for the target-tracking problem. With the right technical assump-
tions, it can be shown to oscillate periodically around the target. In
fact, this is basically the power control mechanism adopted in the IS95
CDMA standard (see, for example, [20]).

III. PERFORMANCE-TARGET-TRACKING MODEL

To fix ideas for subsequent discussions, a performance-target-
tracking model is defined in this section. Consider a discrete time
system, �, described by the equations

x
(n)
i = x

(n�1)
i + u

(n�1)
i x

(n)
i 2 R

y
(n)
i = hi(x

(n)
1 ; . . . ; x

(n)
M ); y

(n)
i 2 R

u
(n)
i = ui(y

(n)
i )

(3.1)

where x(n)i , y(n)i , and u(n)i represent the state, the performance index,
and the control of player i at iteration n, respectively; all of them are
scalars. Given a performance-target vector, 


 = (
1; . . . ; 
M ), the ob-
jective of the performance-target-tracking problem is to find a feedback
controller that guarantees the performance-targets can be achieved and
maintained. Note that the power control model is a special case of (3.1)
provided that we define x(n)i = logP

(n)
i . This model also can be ap-

plied to some peer-to-peer network control problems. For example in
[27], the concept of a fairness index was proposed. Roughly speaking,
the fairness index of a node in a peer-to-peer network is defined by the
ratio

�i =

N

j=1

Mijpj

N

j=1

Lijpj

(3.2)

where pi here represents the traffic intensity controlled by node i and
(Mij) and (Lij) are matrices defined by the routing and the traffic
distribution of the network. This index basically measures how much
a node benefits from the network in proportion to the total amount of
traffic it handles for the network. It can be used as a performance index
for network control.

Definition: The performance target, 


 = (
1; . . . ; 
M ), is feasible
if there exists a state (x�1; . . . ; x

�
M ) such that

yi = hi(x
�
1; . . . ; x

�
M ) = 
i (3.3)

for all i.
Assuming that a performance target is feasible, a natural question is

how to ensure the target can be achieved. Due to the distributed nature
of the players, we assume the sensor is not co-located with the con-
troller. The picture can be schematically described in Fig. 2.

In the first scheme, the controller is co-located with the dynamical
system and it requires a high data rate channel to receive information
from the sensor. For systems with low data rate connection between
the sensor and the controller, the scheme depicted in Fig. 2(b) is more
desirable. In this scheme, control output takes value from a small finite
set. Moreover, high-level decisions, such as setting the target levels,
is separated from the low-level decisions, such as target-tracking for a
given performance target. In this note, our focus is on the latter scheme.
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(a)

(b)

Fig. 2. (a) Feedback control scheme. (b) Alternative feedback control scheme.

For simplicity, all communication channels considered in this note are
assumed to be error-free.

For systems using discrete-value controllers, it is unreasonable
to expect infinite precision in controlling the performance-targets.
Instead, a modified concept of convergence is needed. Let � and "

be the quantization unit of the controller and the performance-target
respectively. Here, the values are quantized linearly. That is, the
values of the states x(n)

i
are of the form x

(0)
i

+ j� for some integer j.
These states are called the quantized states. Correspondingly, for the
performance-target vector, 


 = (
1; . . . ; 
M ), the performance-index
values are quantized into the form 
i + j".

Definition: Given performance targets, 


 = (
1; . . . ; 
M ), and
quantization unit, ", the system � is said to be convergent if for any
initial state, there exists an N , such that

y
(n)
i

� 
i � " (3.4)

for all i and n � N .
In this note, the convergence property of a class of tristate algorithms

is studied. The algorithm is defined with respect to two quantization
units introduced. In particular, given quantization levels � and ", we
define the positive tristate feedback control, !+ by

u
(n)
i

= !
+

y
(n)
i

; 
i =
� y

(n)
i

< 
i � "

�� y
(n)
i

> 
i + "

0 otherwise.

(3.5)

Similarly, one defines the negative tristate feedback control, !�, by
reversing the inequality signs in (3.5). The focus of this note is to in-
vestigate the convergent issue of these classes of tristate controllers.

IV. COUNTER-EXAMPLE

The convergence result stated in Theorem 1 is robust in the sense
that the tristate controller converges for any channel gain matrix for
which a feasible solution exists. However, the power control problem
has a specific structure, which is essential to the proof. Namely, in the
power control problem, whenever a mobile unit raises its power level
to improve its performance target the rest of the mobile units suffer a
detrimental effect. For problems in which a player may simultaneously
improve its own performance-target as well as other players, the con-
vergence property may not hold for the tristate controller.

Consider a system with four players and utilization functions of the
form

y1 =x1 + x2 � x3; y2 = x1 + x2 � x4

y3 =x3 + x4 � x1; y4 = x3 + x4 � x2: (4.1)

In a sense, players 1 and 2 are in one clique with mutual interests and
player 3 and 4 in another. Let " = � and set the targets for all players to
0. This target is obviously feasible. Suppose the initial points are given
by

x
(0)
1 = 2� x

(0)
2 = �2�; x

(0)
3 = 2�; x

(0)
4 = �2�: (4.2)

Since

y
(0)
1 = �2� = �2"; y

(0)
2 = 2"; y

(0)
3 = �2"; y

(0)
4 = 2"

(4.3)
it follows that

x
(1)
1 = 3�; x

(1)
2 = �3�; x

(1)
3 = 3�; x

(1)
4 = �3�: (4.4)

In general,

x
(n)
1 =(2 + n)�; x

(n)
2 = �(2 + n)�; x

(n)
3 = (2 + n)�

x
(n)
4 =�(2 + n)�: (4.5)

Hence, the algorithm is divergent. This counter-example may seem
counter-intuitive. The algorithm fails since players in a clique are un-
certain about their control directions due to a lack of direct communi-
cation. One may label this as the “too many cooks syndrome.”

V. CONVERGENCE RESULTS

In this section, the convergence issue of the tristate controller is
discussed. In particular, a sufficient condition for convergence is pre-
sented. The result depends on two technical conditions on the structure
of the system.

Technical Assumption 1: The observation functions, hi, admit the
following decomposition:

hi(x1; . . . ; xM ) = cixi + di(x1; . . . ; xM ) (5.1)

where di satisfies a Lipschitz condition

jdi(a1; . . . ; aM )� di(b1; . . . ; bM)j

� L k(a1 � b1; . . . ; aM � bM)k
1

(5.2)

for some L, with

jcij � L: (5.3)

Note that for linear observation functions, this technical condition
translates into a simple dominant diagonal condition.

Technical Assumption 2: The quantization units satisfy the relation

" �
jcij+ L

2
� (5.4)

for all i.
As noted earlier, it is reasonable to expect that in order to control the

output with a high accuracy, the controller should have a fine quantiza-
tion level. In particular, note that according to (3.5) there is an output
convergence zone with a width 2" such that the controller takes a zero
value. Suppose the system is in a state with output slightly below this
zone and suppose the controller step size, �, is large enough, one can
easily construct an example in which the output of the system oscil-
lates around the convergence zone. As a result, such a system cannot
converge. However, if (5.4) holds, this possibility is ruled out.

Suppose the performance targets, 


 = (
1; . . . ; 
M ), are feasible.
That is, there exists a state, (x�1; . . . ; x

�

M ) such that

hi(x
�

1; . . . ; x
�

M ) = 
i; for i = 1; 2; . . . ;M: (5.5)

In general, (x�1; . . . ; x
�

M )may not be a quantized state. However, the
following property holds.

Proposition 1: Suppose the targets are feasible. If technical assump-
tions 1 and 2 hold, then for any initial state and any " > 0, there
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exists a sufficiently small �, such that there exists a quantized state,
(x̂1; . . . ; x̂M), satisfying the property

jyi(x̂1; . . . ; x̂M )� 
ij � ": (5.6)

Proof: Let the initial state be x
(0)
1 ; . . . ; x

(0)
M . There exists,

(x̂1; . . . ; x̂M ), of the form x
(0)
i + j� with the property

x
�

i �
�

2
� x̂i < x

�

i +
�

2
: (5.7)

Using the decomposition stated in technical assumption 1

jyi(x̂1; . . . ; x̂M )� 
ij = jyi(x̂1; . . . ; x̂M )� yi(x
�

1; . . . ; x
�

M )j

� jcix̂i � cix
�

i j+ jdi(x̂1; . . . ; x̂M )� di(x
�

1; . . . ; x
�

M )j

�
jcij�

2
+
L�

2
� ": (5.8)

The last inequality follows from technical assumption 2.
We call such a quantized state a quantized solution. We are now

ready to state the main theorem.
Theorem 2: Consider the system, �, satisfying technical assump-

tions 1 and 2. For each player, a tristate controller is assigned according
to the rule that if in the decomposition of yi defined by assumption 1,
the term ci is positive, then let ui = !+, otherwise let ui = !�. Then
the resulting system is convergent to any feasible set of targets.

The proof of this theorem is related to the approach in [24] and [25].
The proof can be broken into two major steps. Namely, under the tech-
nical assumptions stated, one can show that the algorithm defines a
bounded trajectory. Since the feasible states are discrete, this implies
that the algorithm either converges to a fixed point or exhibits a peri-
odic trajectory. However, it can be shown that no cycle can exist in the
current model. Before proving these results, note that by mapping xi
to �xi if necessary, there is no loss in generality in assuming that ci is
positive and that ui = !+.

Proposition 2: Under the assumptions stated in Theorem 2, the tra-
jectory of the algorithm is bounded.

Proof: Let (x̂1; . . . ; x̂M ) be a vector consisting of components
of the form x

(0)
i +j� that satisfies (5.6). Such a vector exists according

to Proposition 1. Define a(i; n) by

x
(n)
i = x̂i + a(i; n): (5.9)

Due to the nature of the tristate algorithm

ja(i; n+ 1)� a(i; n)j � �: (5.10)

Let K(n) = maxi ja(i; n)j. If K(n) = 0, then for all i and for all
m � n, u(m)

i = 0, the trajectory is clearly bounded. So assume that
K(n) 6= 0. The proposition clearly holds if K(n) is a nonincreasing
function of n wheneverK(n) has nonzero value. To show this, assume
player i achieves the maximum at time n. There are two possibilities,
either

1) a(i; n) = K(n) > 0;
2) a(i; n) = �K(n) < 0.
Assume that the first condition holds. Then

h
(n)
i (x

(n)
1 ; . . . ; x

(n)
M )

= h
(n)
i (x̂1 + a(1; n); . . . ; x̂M + a(M;n))

= ci(x̂i + a(i; n))

+ di(x̂1 + a(1; n); . . . ; x̂M + a(M;n))

� cix̂i + di(x̂1; . . . ; x̂M ) + ciK(n)

� Lmax
j

ja(j; n)j

� 
i � "+ (ci � L)K(n) � 
i � ": (5.11)

Fig. 3. Example of a peak-slide of length k.

Hence,u(n)i 2 f��; 0g, that isu(n)i � 0. But a(i; n+1) = a(i; n)+

u
(n)
i � a(i; n). Similarly, for the second case

h
(n)
i (x

(n)
1 ; . . . ; x

(n)
M )

= h
(n)
i (x̂1 + a(1; n); . . . ; x̂M + a(M;n))

= ci(x̂i + a(i; n))

+ di(x̂1 + a(1; n); . . . ; x̂M + a(M;n))

� cix̂i + di(x̂1; . . . ; x̂N )� ciK(n)

+ Lmax
j

ja(j; n)j

� 
i + "� (ci � L)K(n) � 
i + ": (5.12)

Hence, u(n)i 2 f0; �g, that is u(n)i � 0. But 0 � a(i; n + 1) =

a(i; n) + u
(n)
i � a(i; n). Therefore, for any player i that achieves the

maximum value at iteration n

ja(i; n+ 1)j � ja(i; n)j: (5.13)

For player j where ja(j; n)j < K(n)

ja(j; n+ 1)j � ja(j; n)j+ � � K(n): (5.14)

Hence, K(n) is nonincreasing as a function of n.
Proposition 2 shows that for given any initial state, if the perfor-

mance-target is feasible, the trajectory is bounded. Consider a sequence
of vectors, x(n), n = 0; 1; . . . ; the sequence is said to be asymptoti-
cally periodic if there exists integers, N > 0 and T � 1 such that for
all n � N

x
(n) = x

(n+T )
: (5.15)

Since the transition of the algorithm depends only on the current state
and is deterministic, the fact that the trajectory is finite implies that it
either converges to a stationary point, or the trajectory is asymptotically
periodic with a minimum period larger than 1. For systems satisfying
the conditions of Theorem 2, we claim the second case cannot hold.

An arbitrary player, say i, is said to undergo a peak-slide of length
k(k � 1), from iteration m to n, if there is an integer n > m so that:

x
(m�1)
i = x

(m)
i � � x

(m)
i = x

(n)
i + k�: (5.16)

Pictorially, a peak-slide is depicted in Fig. 3.
Lemma 1: If there is a peak-slide of length k(k � 1), from iteration

m ton for player i, then there is a player j, and an integer t,m � t < n

such that

x
(t)
j � x

(m�1)
j � (k + 1)�: (5.17)

Proof: Since x(m)
i = x

(n)
i + k�, and the algorithm changes by

at most one � at a time, there exists an integer t, m � t < n, such that
x
(t)
i = x

(n)
i + � and y(t)i > 
i + ". Therefore

x
(m�1)
i = x

(m)
i � � = x

(t)
i + (k � 2)� = x

(n)
i + (k � 1)�: (5.18)
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Note that y(m�1)i < 
i � ". Hence


i + " <y
(t)
i = cix

(t)
i + d(x(t))

= cix
(m�1)
i � ci(k � 2)� + d(x(m�1))

� d(x(m�1)) + d(x(t))

� y
(m�1)
i � ci(k� 2)� + Lkx(t) � x

(m�1)k1

>
i � "� ci(k� 2)�

+ Lkx(t) � x
(m�1)k1: (5.19)

It follows that

2"+ ci(k� 2)� < Lkx(t) � x
(m�1)k1: (5.20)

According to technical assumption 2, 2" � (jcij+ L)�. So

kx(t) � x
(m�1)j1 > 1 +

ci

L
(k � 1) � � k�: (5.21)

Hence, there exists an integer j such that

x
(t)
j � x

(m�1)
j > k�: (5.22)

Since the difference of the two states are multiples of �, the Propo-
sition holds.

Proposition 3: Under the assumption stated in Theorem 2, the tra-
jectory of the algorithm cannot be asymptotically periodic with min-
imum period larger than 1 if the performance targets are feasible.

Proof: Suppose that the trajectory is asymptotically periodic and
let N > 0 and T > 1 be integers such that for all n � N , x(n) =
x
(n+T ), where T is the minimum period. It follows that there exists a

peak-slide starting after N with length larger than or equal to 1. Since
the trajectory is bounded, there is a peak-slide with maximum length
k. According to Lemma 1, there exists an integer j such that

x
(t)
j � x

(s)
j � (k + 1)� (5.23)

where N � s � t. Since the trajectory is periodic after time N , (5.23)
implies that there is a peak-slide with length larger than k, a contradic-
tion.

Proof of Theorem 2: Since the trajectory is bounded, it must be
asymptotically periodic. According to Proposition 3, the minimum pe-
riod is equal to 1. That is, the trajectory converges to a stationary state.

VI. CONCLUSION

In this note, we investigated the convergence properties of a class of
distributed feedback control algortihms, the tristate feedback control.
This class of controls is intended to be used for systems where the sen-
sors and controllers are separated by a low data rate communication
channel. The collection of ideas presented here is motivated by wireless
communication problem and may find application in other networking
systems. Although the tristate algorithm is robust in the sense that the
same controller works for systems with different observation functions
with trivial dynamics, the convergent rate may be slow. More compli-
cated types of controllers (e.g., [3], [6], [19], [26], and [29]) may provide
faster convergence at the price of requiring a higher communication data
rate. This and other issues are open questions waiting to be answered.
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Use of the Kalman Filter for Inference in State-Space
Models With Unknown Noise Distributions

John L. Maryak, James C. Spall, and Bryan D. Heydon

Abstract—The Kalman filter is frequently used for state estimation in
state-space models when the standard Gaussian noise assumption does not
apply. A problem arises, however, in that inference based on the incor-
rect Gaussian assumption can lead to misleading or erroneous conclusions
about the relationship of the Kalman filter estimate to the true (unknown)
state. This note shows how inequalities from probability theory associated
with the probabilities of convex sets have potential for characterizing the es-
timation error of a Kalman filter in such a non-Gaussian (distribution-free)
setting.

Index Terms—Estimation theory, multivariate, non-Gaussian processes,
state-space models, uncertainty.

I. INTRODUCTION

The linear state-space model with random noises is widely used to
model dynamic systems. In many practical settings, the noise terms will
have unknown probability distributions, which contradicts the stan-
dard assumption of normality made in state-vector estimation. This
assumption is usually made for reasons of mathematical tractability
in algorithm derivation and uncertainty characterization; it is rarely
motivated by the nature of the actual underlying random processes in
the system under consideration. It is usual to make inferences about
the system based on computed estimation uncertainties. Naturally, if
the Gaussian assumption is made when the noise terms have unknown
distributions, there is significant danger of drawing invalid inferences
about the system.

The aim of this note is to present a computationally feasible and rela-
tively easy-to-implement approach by which the system measurements
can be used to make valid inference about the (unknown) state value in
the non-Gaussian (distribution-free) setting. It will be shown that the
Kalman filter can be used for this purpose. The Kalman filter is well
known for state estimation; and widely used, efficient and numerically
stable implementation forms exist for systems with many state vari-
ables. The essence of the approach is to show how uncertainty bounds
(confidence regions) can be attached to the Kalman filter state estimate
that properly account for the distribution-free setting.

The state-space model considered here has the standard discrete-time
form

xk =Fk�1xk�1 + wk (State equation) (1a)

yk =Hkxk + vk; (Measurement equation) (1b)
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k = 1; . . . ; n where x0, vk, and wk have (in general) unknown (non-
Gaussian) distributions with known finite second moments, i.e., vk �
(0; Rk), wk � (0;Qk) (without loss of generality, we assume x0 =
0), and Fk and Hk represent the state transition matrix and measure-
ment matrix, which may, in general, be time varying. We assume that
x0; v1; w1; v2; w2; . . . are mutually independent. As with many state-
estimation methodologies (e.g., [6] and [10]), we assume that the model
parameters (Fk , Hk , etc.) are known.

The problem of state estimation in non-Gaussian settings has, of
course, been extensively studied (e.g., see literature reviews and dis-
cussions by [5], [13], [17], [27], and other references listed later in this
paragraph). The approach here is fundamentally different from existing
methods in that we do not require a detailed knowledge of the wk and
vk distributions (hence the term “distribution-free”). This approach
recognizes the practical difficulties in specifying the exact form of the
non-Gaussian distributions as required by other existing approaches,
such as non-Gaussian filtering and Monte Carlo approaches; see, e.g.,
[12], [24], or [25]. The most popular Monte Carlo technique—Markov
chain Monte Carlo, as in [9] and [23]—is an example of a non-Gaussian
method requiring full knowledge of the distributions being sampled.
Other non-Gaussian sampling approaches, such as [4], [6], and [10],
also rely either on known noise distributions or on distributions that are
conditionally Gaussian with the conditioning parameters being gener-
ated within the algorithm.

The approach to inference about the state vector presented here,
based on attaching uncertainty bounds to the Kalman filter estimate,
is motivated by the fact that the Kalman filter has been, and will con-
tinue to be, used in known non-Gaussian settings. The reasons for this
include wide availability of software, computational efficiency and nu-
merical stability of particular implementations, and general industry
acceptance and familiarity. The complexity of implementing software
for a full nonlinear filter is generally much higher than that required for
a Kalman filter implementation.

There are several other approaches for quantifying the uncertainty in
a Kalman filter estimate in general distribution-free settings. The first
is to use a version of the Chebyshev inequality, which is very simple
as it is based on a straightforward application of the error covariance
matrix generated as part of the filter. This method suffers, however,
in producing uncertainty bounds that are too large (i.e., too conserva-
tive) for many practical applications. A second approach is based on
the Kantorovich inequality from linear algebra and probability theory.
This idea, introduced in [22], has promise of producing tighter bounds
than the Chebyshev inequality, but is currently only developed for the
scalar state setting. A third approach, which applies to linear and non-
linear estimation problems, is presented in [14] and [21]; this method
is based on asymptotic theory that requires that the noise terms become
asymptotically Gaussian.

Section II and III describe the approach, which differs from all of
the non-Gaussian and distribution-free approaches shown before. It is
based on computing a bound for the probability of the Kalman filter
estimation error exceeding certain threshold values in a manner anal-
ogous to the Chebyshev inequality. However, the assumptions being
introduced on the general class in which the noise distributions lie
are aimed at producing more informative (tighter) uncertainty bounds
than those resulting from the Chebyshev inequality. Section IV demon-
strates these ideas in an estimation problem taken from the engineering
literature.

II. ESTABLISHING ESTIMATION UNCERTAINTY BOUNDS

The objective here is to compute uncertainty bounds for the state es-
timation error, ~xn = x̂n�xn, obtained from the Kalman filter [applied
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