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Assignment Under Cochannel and Adjacent-
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Abstract—Generally, the channel-assignment problem (CAP)
for mobile cellular systems is solved by graph-coloring algo-
rithms. These algorithms, though sometimes can yield an optimal
solution, do not supply any information on whether an optimal
solution has been found or how far away it is from the optimum.
In view of these undesirable features, two relevant results are
presented in this paper. First, a lower bound for the minimum
number of channels required to satisfy a given call-traffic demand
is derived. This lower bound is tighter than the existing ones
under certain conditions and can be used as a supplement for
other approximate algorithms. Second, we propose an efficient
heuristic algorithm to solve this problem. Although the CAP
is nondeterministic polynomial (NP) complete in general, our
algorithm provides an optimal solution for a special class of
network topologies. For the general case, promising results are
obtained, and numerical examples show that our algorithm has
a better performance than many existing algorithms.

Index Terms—Cellular systems, channel assignment, graph
coloring, maximum packing.

I. INTRODUCTION

T HE LIMITING availability of the radio spectrum imposes
an inherent bound on the capacity of a mobile cellu-

lar system. As demands for various mobile communication
services grow, the question of how to utilize the valuable
bandwidth in the most efficient way becomes more and more
critical. To maximize the system capacity, one typically tries
to reuse the frequencies as much as possible. However, this
may increase the mutual interferences among the cellular users.
To maintain a certain quality of service, one has to keep
the interference below a predefined level. For systems using
frequency division multiple access (FDMA) or time division
multiple access (TDMA), this requirement usually translates
into compatibility constraints—stating for an arbitrary cell site
what channels may be used for new calls based on what
channels are currently used in other cell sites. Allocating
the channels in an efficient way, which does not violate the
compatibility constraints, is the main objective of the channel-
assignment problem (CAP). A lot of research can be found
in the literature. Most of the investigations are based on
graph theoretic or heuristic approaches [1], [5], [6], [16],
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[17]. Recently, algorithms employing neural networks [4],
[12] and simulated annealing [3], [15] have also been pro-
posed. However, neural-network-based algorithms typically
yield only suboptimal solutions [13]. The simulated annealing
approach, although it may be more flexible, is easily trapped
in a localminima, which requires a lot of computation time to
be escaped from [3]. In short, different approaches have their
own limitations. It reflects how hard the CAP is.

In the simplest formulation of the CAP, only cochan-
nel interference is considered. The problem is known to be
equivalent to the classical graph-coloring problem. Since the
graph-coloring problem is nondeterministic polynomial (NP)
complete [10], an exact search for the optimal solution is
impractical for a large-scale system due to its exponentially
growing computation time. Hence, most of the efforts are
spent in developing approximation algorithms [1], [5], [16].
These algorithms occasionally can find optimal solutions, but,
in general, provide only suboptimal ones with no information
on how far away they are from the optimal solution. In view of
this undesirable feature, Gamst derives some lower bounds for
the minimum number of channels required [7]. Our paper will
provide another lower bound, which is tighter in some cases.
We also propose an algorithm, which always finds the optimal
solution for a special class of cellular network topologies. This
optimality not only is significant in its own right, but it also
yields a clue on which circumstances our algorithm has good
performance. Finally, an overall better performance compared
to other existing algorithms will be demonstrated by numerical
examples.

II. PROBLEM FORMULATION

Frequency sharing among different users is an important
issue in mobile cellular systems. Many different multiple-
access schemes have been proposed. Among them, the most
popular ones are FDMA, TDMA, and code division multiple
access (CDMA). In FDMA systems, the spectrum is divided
into nonoverlapping frequency bands. Each user is allocated
a dedicated frequency band for information transmission. In
TDMA systems, each user is allocated a dedicated time slot for
transmission, and different users may share the same frequency
band. In CDMA systems, each user is assigned a well-designed
code such that the interference among users is minimized. The
entire time frame as well as the entire spectrum can be used for
transmission. For simplicity, in this paper we focus on channel
assignments in FDMA systems. In this context, a channel is
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referred to as a frequency channel. However, the idea may as
well be applied to TDMA systems, provided that we refer to
a channel as a time slot and define the compatibility matrix
mentioned below in an appropriate way.

We assume that the channels are equally spaced in the fre-
quency domain and are ordered from the low-frequency band
to the high-frequency band with numbers 1, 2, 3, etc. A system
of cells is represented by anvector .
Each cell requires channels . This forms a
requirement vector . The assignment
of the channels to the cells subjects to three different types
of constraints.

1) Cochannel constraint (c.c.c.): the same channel is not
allowed to be assigned to certain pairs of cells simulta-
neously.

2) Adjacent-channel constraint (a.c.c.): channels adjacent in
number are not allowed to be assigned to certain pairs
of cells (typically, adjacent cells) simultaneously.

3) Cosite constraint (c.s.c.): any pair of channels assigned
to the same cell must be separated by a certain number.

The above constraints can be represented by an
nonnegative symmetric matrix , the so-calledcompatibility
matrix. The th element represents the minimum differ-
ence between channels assigned to celland that assigned
to cell . If any pair of cells and is subjected to the
cochannel constraint or adjacent-channel constraint, we have

or , respectively. The cosite constraint is represented
by the diagonal elements ’s. Typically, is greater than
or equal to five.

The CAP is specified by the triple [7]. Let
1 2 be a set of channels and the set of channels

assigned to cell . The objective of the problem is to find
the minimum value of such that there exists an assignment
pattern , which satisfies the following
conditions:

for all

and

for all

where denotes the number of channels in the set of
, and , denote an arbitrary channel in and ,

respectively.
This problem is equivalent to a generalized graph-coloring

problem [16]. We represent each cell by a vertex with weight
. If 0, the vertices and are joined

together by an edge with label . The resulting graph
is called an interference graph. The CAP is equivalent to
assigning positive integers1 2 to the vertices such
that each vertex has integers assigned. The difference
between the integers assigned to two adjacent vertices must
not be less than the edge label. The objective is to minimize
the maximum integer used. In the special case, where only
cochannel interference is considered, the’s are either zero’s
or one’s. This problem can then be transformed easily to the
classical graph-coloring problem. In the next section, we will
consider this special case first.

III. PURE COCHANNEL INTERFERENCECASE

The pure cochannel-interference problem can be defined by
a topology graph with vertices representing the cells:
each vertex has a weight 1 . A feasible coloring
solution assigns colors to the vertices with the constraint that
no two adjacent vertices have the same color. Moreover, a
vertex with a weight needs to be assigned colors.
The objective of the problem is to find a solution with the
minimum number of colors. The optimal policies are termed
the maximum packing (MP) assignments [2].

Unfortunately, for an arbitrary graph, the problem of de-
termining an MP assignment is NP complete. Hence, MP is
an ideal concept rather than a practical solution. However, for
graphs of special structures, efficient algorithms to compute
MP assignments may exist, and we call themMP algorithms.

In this paper, a heuristic algorithm is proposed. It has the
property of yielding solutions with performance close to the
MP assignments. Moreover, for a special class of network
topology, it can be proved that this heuristic method is an MP
algorithm.

Before we proceed, we have to define some terms. First
of all, we define the neighborhood of as the set of

’s adjacent vertices. A set of vertices in a graph, which
are interconnected, is called aclique. For every clique, we
define its clique weight as the sum of weights of all the
vertices inside it. A vertex typically belongs to more than one
clique. We denote as the clique, which contains
and has maximum weight. (Ties are resolved randomly.) The
maximum clique weightof , denoted as , is defined as
the clique weight of . When it is necessary to make
the corresponding graph explicit, we write it as .

Basically, our algorithm uses therequirement exhaustive
strategy[5]. We pick up a color and assign it to the vertices
one by one until no further assignment of that color is possible.
Then, the next color is used, and the procedure is started
over again. The question is how to determine which vertices
should be colored by . We choose the vertex with the greatest
weight as the first vertex. To choose the subsequent vertices,
the principle of themaximum overlap of denial areasas defined
in the third method in [5] is used. This principle states that a
channel should be assigned to the cell whose denial area has
maximum overlap with the already existing denial area of that
channel. (The denial area for a cellis the set of neighboring
cells, which cannot share the same frequency withdue to
cochannel interference. The denial area of a channel is the
set of vertices, which cannot be assigned with that channel.)
Our algorithm differs from the algorithm proposed in [5] in
the way the overlap is defined. In our algorithm, we define
the overlap as the number of cells within the intersection of
the two denial areas. In [5], overlap is defined as the sum of
the requirements of the cells within the intersecting areas. Our
definition ensures that the cells to which a channel is assigned
can be packed as close to each other as possible. When there
is a tie, we break it by choosing the vertex with the largest
maximum clique weight with respect to the topology graph
induced by the intersection of the denial areas. The rationale
of this rule is that the larger the maximum clique weight is,
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Fig. 1. A seven-cell system for the demonstration of the SP algorithm.

the more difficult it is for that vertex to be colored. We call
our algorithm the sequential packing (SP) algorithm, whose
pseudocode is shown as follows. Note thatdenotes the set
of vertices being colored by the current color, and denotes
the vertices, which are forbidden to be colored by:
procedure SP [ : graph]

: 1;
while has 1 or more vertices do

let and be empty sets;
let be a vertex in and

;
repeat

put into ;
;

;
if

let be a vertex in and
;

else
: and ;

if
then let be the only vertex in ;
else

for each do
construct a subgraph induced

by the vertex set
;

let be a vertex in and
;

end else
end else

until ;
for each do

color it with ;
increase by 1;
decrease by 1;
if

then delete from the vertex and all the
edges connecting to ;

end for
end while

end.
Example: Fig. 1 shows a system of seven cells

. The number of required channels or weight of
each cell is specified inside the corresponding hexagon. Only
cochannel constraint is considered. A cluster size [14]
of seven is assumed. In a two-dimensional (2-D) hexagonal

Fig. 2. The corresponding graph of the seven-cell system.

system, it corresponds to a two-cell buffering scheme, which
means that a channel used by a particular cell cannot be
shared by any other cell whose distance from the original one
is less than or equal to two “cells.” For example, in Fig. 1,
a channel used by cell can only be reused by cells, ,
or . This system can be represented by a topology graph
(shown in Fig. 2).

1) First of all, we use to color vertex A, which has the
greatest weight among all the vertices. The denial area,
denoted by , becomes .

2) Next, we choose the vertex whose denial area has
maximum overlap with the current denial area. Totally,
there are three candidates, namely, vertices, , and :

a) denial area of ;
b) denial area of ;
c) denial area of .

3) We choose the one with maximum cardinality in the
intersecting region. In this case, there is a tie between
vertices and . To break the tie, we first form
a subgraph for vertices and . The subgraph is
induced by the candidate vertex and the vertices in the
overlapping of the denial areas. Then, we choose the
vertex that has a larger maximum clique weight in the
corresponding subgraph.

a) For vertex , consider the subgraph induced by
. The maximum clique weight of is

five.
b) For vertex , consider the subgraph induced by

. The maximum clique weight of is
six.

Therefore, vertex is chosen and colored by . The
new denial area becomes .

4) No more vertices can be colored by. Then, the weight
of and are both decreased by one. The next color,

, is used, and the procedure is repeated.

As will be discussed later, Theorem 1 shows that this
algorithm yields an optimal solution for this simple example.
Besides, it is worth noting that the most time-consuming task
in this algorithm is the calculation of clique weight. The
calculation of clique weight is needed only if there is a tie
in the maximum overlap criterion. The number of candidate
vertices involved in the tie must be less than. A vertex
typically belongs to more than one clique. However, due to
the cellular structure, a vertex cannot belong to more than
cliques, where is a constant. Therefore, in choosing a vertex
to be colored, the clique-weight calculation is less than.
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Fig. 3. Example of a three-stripe system.

Since there are only vertices, the number of vertices being
assigned the same color must be less than. As a result, the
number of calculations is , where is the number of
colors used and is the number of vertices.

Although the CAP is NP complete in general,
for the pure cochannel case, it turns out that the SP algorithm
allocates channels optimally for networks with certain special
structure.

From now on, to facilitate the discussion, we will make
the standard technical assumption that cells are laid out in the
regular hexagonal tiling pattern. We define a system consisting
of rows of cells an -stripe cellular system.Notice that a
linear cellular system is a one-stripe system. A three-stripe
system is shown in Fig. 3. Furthermore, we assume that the
cochannel constraint is equivalent to a cluster sizeof seven.

Theorem 1: For a graph arising from an-stripe cellular
system with less than or equal to three and a cluster size equal
to seven, the SP algorithm always yields a solution, which has
the smallest possible number of colors used. In other words,
it is an MP algorithm for this special class of graphs.

The proof of Theorem 1 is given in Appendix A.

IV. GENERALIZED SEQUENTIAL PACKING

The SP algorithm stated in the previous section can only
be used in the pure cochannel case. In this Section, we will
generalize it to include the adjacent channel and
cosite constraints.

In the pure cochannel case, cells using the same channel
are packed closely to each other such that the utilization of
each channel is maximized. However, this may not be a good
policy if we have to take account of the adjacent-channel
constraint for the reason that a closely packed channel will
leave little room for its adjacent channels. Because of this
mutual intervention, we pack the channels on a two-by-two
basis.

The generalized sequential packing (GSP) algorithm can be
described as follows. Suppose the round to color withand

has just been initiated. We first find the vertex with the
greatest weight. The tie is broken arbitrarily. If this vertex can
be colored by , we color it using . Otherwise, we use .
If both colors cannot be assigned, we choose the vertex with
the next greatest weight. This process repeats until a vertex
that can be colored by either or is found. We call
this the maximum weight criterion. Then, we try to color the
remaining vertices in a round-robin fashion. We first find the
set of vertices that are allowed to be colored by, but not

. Call this set . If is empty, it becomes ’s turn.
If not, we choose a vertex from using the same criterion of

SP, i.e., first by the principle of maximum overlap of denial
area and then by the maximal clique weight if there is a tie.
This vertex is then colored by. This process repeats until
is empty. Afterwards, we continue the coloring using . If
both and are empty, we start the process again using
the maximum weight criterion. The whole procedure repeats
until no more vertices can be colored by eitheror .

The above procedure can be more succinctly described by
the following pseudocode. We use to denote the set of
vertices that are forbidden to be colored by due to the
interference constraints

1) if and
return

if
let which has maximum weight.
let be the weight of

else
let

if
let which has maximum weight
let be the weight of

else
let

if
color by

else
color by

update and ;
2) let and

if and
goto 1;

3) if
goto 4

else if for all
choose by the maximum weight criterion

else
choose by the principle of maximum

overlapping
(tie is broken by the condition of maximum

clique weight)
color by
update and
repeat 3;

4) if
goto 2

else if for all
choose by the maximum weight

criterion
else

choose by the principle of maximum
overlapping

(tie is broken by the condition of maximum
clique weight)

color by
update and
repeat 4.

We have two variations of GSP. In the first variation, when
no further coloring by or is possible, we use the next
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Fig. 4. A seven-cell linear system for the demonstration of the GSP algo-
rithm.

two colors and . The second one, however, will
“uncolor” the vertices already colored by . The procedure
is started again using and instead. We call these two
variations GSP1 and GSP2, respectively.

Example: In Fig. 4, a linear network with seven cells is
shown. The channel requirement of each cell is shown inside
the cell. We assume that the cochannel constraint is equivalent
to a cluster size of three, i.e., two-cell buffering, and adjacent
channels cannot be used by adjacent cells. No cosite constraint
is imposed.

Let be the th assignment, where channelis allocated.
In other words, the superscript specifies the order of the
assignment. First of all, we consider the assignment if SP is
used, i.e., channels are assigned one by one instead of two
by two (cf. GSP). In case of a tie, the cell in the left-most
position is chosen.

The assignment pattern of SP is

Although is packed in the most compact way, there is no
room for due to the adjacent-channel constraint. This is the
motivation for the design of GSP. Now, we consider GSP1.
The assignment pattern is

At first, is assigned to the fourth cell (vertex), which has
the greatest weight. Now, since we cannot find a vertex that
can be colored by , but not , we stop using and try

. The second and the sixth vertex can be colored by, but
not . So, we color them using . No more vertices can be
colored by either or . Therefore, we start the procedure
again using and . Finally, the assignment pattern shown
above can be obtained.

Next, we show the assignment procedure of GSP2, shown
at the bottom of the page.

The first step is simply the same as GSP1. However, in
the second step, we “undo” the coloring of. The procedure
then continues using and . Finally, a feasible assignment
is derived.

In this example, SP uses seven channels, while both GSP1
and GSP2 use six. It demonstrates the effectiveness of packing
channels on a two-by-two basis. In fact, the solution obtained
by GSP1 or GSP2 is optimal for this problem.

V. A L OWER BOUND FOR THE GENERAL CASE

Before evaluating the performance of the algorithm GSP, it
is useful to first derive a lower bound for the evaluation of
different channel-assignment algorithms.

In [7], several lower bounds are given. However, we find
that in some cases, the result obtained by our proposed GSP
is still quite far away from the tightest lower bound given.
This motivates us to improve the bound. Here, we will derive
a lower bound, which, in some cases, is tighter than those
given in [7].

As in [7], we use to denote the minimum number
of channels used for problem, and we call a subset of

-completeif

for all

Note that a 1-complete subset is equivalent to a clique. The
concept of a -complete subset is just a generalization of a
clique.

Theorem 2: Let be a CAP and be a 1-
complete subset of . Let . Assume
and there exists a subset of such that

and

for all

Furthermore, let . If

(1)

else

(2)

Proof: Define with having only
two nonzero components

and

The entries of the compatibility matrix are

and

1)

2)

3)

4)

5)
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TABLE I
PERFORMANCE OFSP UNDER DIFFERENT SYSTEM LAYOUTS

(COCHANNEL CASE)

By Lemmas 4 and 5 in [7], . Now, we
want to find . It is obvious that

since the channels used in must be separated with minimum
distance .

For any two channels in spaced with distance, the
number of channels that can be used by cells inbetween
the gaps is

If 0, no gap exists and more channels are needed.
Hence, (1) is obtained.

On the contrary, if 0, there are usable chan-
nels left inside all the gaps. If , no additional
channel is needed. Otherwise, we need more
channels. Hence, (2) is obtained.

An example illustrating Theorem 2 is shown in the next
section.

VI. NUMERICAL EXAMPLES

A. Example 1: Pure Cochannel Case

In the pure cochannel case, it is well-known that theclique
number

clique

provides a lower bound for the number of channels needed
since the channels assigned to the same clique must all
be different. Hence, we will use this bound to judge the
performance of SP under different system topologies.

We compare two different layouts of hexagonal cells. The
first one we considered is a 1010 system, and the second one
is 5 20. We assume a cluster size of seven. The channel
requirement in each cell is generated randomly, ranging from
1 to 100. Thirty instances of each system are obtained by
varying the seed of our random-number generator. Generally,
we do not know the optimal solution, except when the solution
of our algorithm is the same as the lower bound. So, we use
the percentage of additional channels required relative to the
lower bound as the performance measure.

The result is shown in Table I. It can be seen that SP
performs better when applying to the 5 20 system in both
the worst and average case. An optimal solution is found 22
out of 30 times. It is reasonable to expect that the “narrower”
the network structure, the better the performance of SP.

In general, the performance of SP is acceptable in light
of the fact that the problem to find an algorithm, which can

Fig. 5. Example 2 and case 1 of example 3. The numbers in the cells
represent the correspondingmi.

Fig. 6. Case 2 of example 3. The numbers in the cells represent the
correspondingmi.

guarantee the obtained solution does not exceed the optimal
value by more than 100%, is NP complete [9].

B. Example 2: General Case (Lower Bound)

We take an example from [7] to demonstrate that the lower
bound presented in the previous section can be tighter than that
in [7]. The cellular layout is shown in Fig. 5. The numbers in
the cells represent the corresponding channel requirements.
As in [7], we assume cochannel constraints equivalent to a
12-cell cluster, adjacent-channel constraints for adjacent cells,
and the cosite constraint .

Let cell be the cell that requires 77 channels. Since
, the most compact way to assign channels to cellis

1, 6, 11, 16, , 376, 381.

Due to the adjacent-channel constraints, channels that can
be used by its neighbors are

3, 4, 8, 9, 13, 14, , 378, 379.

Therefore, there are channels inside the
“gaps.” Since the total requirement of all its six neighbors is
198, an additional channels are needed. Hence,
the lower bound is . This bound is tighter than
the best lower bound given in [7], which is just 414.

The derivation of this lower bound is in the same spirit
as the proof of Theorem 2. Actually, we can directly apply
Theorem 2 with and . Let be cell and the
set containing the six adjacent cells of. Then, .
Equation (2) gives a lower bound of 427 as above.

C. Example 3: General Case (Algorithmic Results)

We now compare GSP1 and GSP2 with the algorithms
proposed by Box [1] and Sivarajanet al. [16]. The examples
we use are taken from [7] and [16]. The network structure and
channel requirements are shown in Figs. 5 and 6.
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TABLE II
ALGORITHMIC RESULTS CORRESPONDING TO THEPROBLEM IN FIG. 5

TABLE III
ALGORITHMIC RESULTS CORRESPONDING TO THEPROBLEM IN FIG. 6

The original algorithm proposed by Box attempts to satisfy
the requirements using a given number of channels. It is
an iterative algorithm, which starts with an arbitrary initial
order of the requirement list. Each requirement is associated
with a real number, which represents the assignment difficulty.
Assignment is made according to the order, using the first
channel that is compatible with previous assignments. If a
requirement cannot be satisfied, the assignment difficulty of
that requirement is increased by a random amount drawn uni-
formly from 0.5 1.5 . After an iteration, the requirement list
is rearranged in decreasing order of the assignment difficulty.
Then, the procedure is repeated.

In order to make a fair comparison, Box’s algorithm is
slightly modified. We use the tightest lower bound as the
input parameter . Additional channels will be used if a
requirement cannot be satisfied by the firstchannels. The
algorithm terminates when all the requirements can be satisfied
by channels or the number of iterations reaches a prescribed
maximum value.

Another algorithm we considered is the one proposed by
Sivarajan [16]. Actually, it is not a single algorithm, but a
class of algorithms based on different ordering strategies. For
a detailed description, see [16].

The results are shown in Tables II and III with different
interference constraints. The best result obtained among the
whole class of Sivarajan’s algorithms are reproduced from
[16]. The Box’s algorithm is performed twice. One is limited
to a maximum of 50 iterations, and the other is limited to 100.

It can be seen that most of the algorithms find the optimal
solution in problems P3-8 and Q3-5. In these cases, the lower
bounds are obtained by

which implies that these problems are limited by the cosite
constraint. This class of problems can be well solved by GSP2
since it always assigns the smallest possible color to the vertex

with maximum weight. Hence, optimal solutions are found in
all these cases.

However, problems P1-2 and Q1-2 are relatively hard to
solve. The best results are obtained either by GSP1 or GSP2.
Although GSP1 cannot deal with the problem limited by cosite
constraints adequately, it does have the best performance in P1
and P2. Problem P2 is just the same problem considered in the
previous example. As stated in [7], Box’s algorithm gives a
solution of 445, which is the best result at that time. However,
both GSP1 and GSP2 yield a better solution.

In general, GSP2 gives satisfactory results in all the cases.
Its performance is better than Sivarajan’s algorithms in the
cases we tested. If compared to Box’s heuristic, it requires
more channels only for problem P1.

D. Example 4: Comparison with the Neural-Network Approach

Recently, the neural-network approach is used to solve CAP
[4], [12]. In [4], eight problems were used for testing the
proposed neural-network parallel algorithm. It was found that
the optimal solutions are obtained in all those cases. We have
tried to solve those problems using GSP2, and we find that it
also yields the optimal solutions.

Taking a closer look at those problems, we find that four of
them are identical to problems P4, P6, P8, and Q4, which we
have already examined in the previous example. Another two
have the same cellular network (as shown in Fig. 6), but with
different constraints: a.c.c. and or . It
is worth noting that all these six problems are limited by the
cosite constraint, which is relatively easy to solve as we have
pointed out already. In fact, seven out of the eight problems
are cosite-constraint limited.

The remaining problem is taken from [12]. The data is
obtained from a real-world network, which consists of 25 cells.
Cosite constraint is not considered. In this case, the optimal
solution is found by both the neural-network algorithm and
GSP2.
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Since most of the tested problems are cosite-constraint lim-
ited, the ability of the neural-network approach in dealing with
problems like P1-2 and Q1-2 requires further investigation.

VII. CONCLUSION

The CAP is a well-defined problem and has invoked a lot of
interest in the past years. It is known to be NP complete, even
if only the cochannel interference is considered. However, this
result does not rule out the possibility of an optimal assignment
algorithm, which works in polynomial time for some special
network structures. In this paper, we propose the SP algorithm,
which is optimal for three-stripe cellular systems under the
cochannel constraint. However, this optimality is not preserved
for other network structures with more general interference
considerations.

The SP algorithm is generalized for problems with the
adjacent channel and the cosite constraint. Numerical exam-
ples from [16] are used to test the algorithm. Comparisons
with other existing algorithms are made, and the results are
convincing. It is also found that problems, which are limited
by the cosite constraint, are relatively easy to solve. Further
research on classifying different traffic and network topology
instances is interesting and may provide clues on designing
algorithms for problems of different classes.

Additionally, we have derived a lower bound for the min-
imum number of channels required. It is tighter than that
proposed by Gamst in some cases. However, in some exam-
ples, there is still a gap between the lower bound and the best
solution known. Further improvements might be possible.

APPENDIX

OPTIMALITY OF SP FOR THREE-STRIPE SYSTEM

In this Appendix, we present the proof of Theorem 1.
Given any graph, we call any feasible coloring of vertices a

realization. The realization, which requires the minimum num-
ber of colors, is called anMP realization. Given a realization, it
is possible to obtain another realization by simply relabeling
some or all of the colors. We call realizations that can be
obtained from one another by relabeling colorsequivalent.
For an arbitrary graph, the MP realization is not necessarily
unique. This is clear in view of the possibility of equivalent
realizations. However, some graphs may allow multiple MP
realizations that are not equivalent. For those realizations,
which require the same number of colors, we define that they
are similar. Therefore, if a realization is similar to an MP
realization, it is also MP.

One way to construct examples of similar realizations that
are not equivalent is to use the following color swapping
operation for a three-stripe system with reuse factor of seven.
First of all, we introduce the concept of the left- and right-hand
side of a cell. In a three-stripe system, there is an obvious left-
and right-hand side relation between any two cells with one
exceptional case. For example, in Fig. 7,, , , , and

are on the right-hand side of . The left-hand side is
defined similarly. The only exception is the vertex , which
belongs neither to the left- nor the right-hand side of. We
call it the conjugate cell of . Now, assume that is a

Fig. 7. An example to illustrate the concept of the left- and right-hand side
of a cell.

realization in which is colored by and is colored by
and . Define the operation Swap by
swapping colors and for cells and and all the cells
on the right-hand side of either of these two cells. Similarly,
we can define Swap by swapping and for
cells and and all the cells on the left-hand side of either of
these two cells. If we apply the operation Swap
to a realization and this swapping operation does not violate
the channels assigned for cells on the left-hand side of either

or , then the realization obtained after the swapping is
similar to the original realization. If at least one of the colors
has been used on cells on the left-hand side of eitheror ,
then the two realizations are not equivalent.

Proof of Theorem 1:A one- or two-stripe cellular system
can be embedded into a three-stripe system. An assignment
problem for a one- or two-stripe system can be viewed as a
problem on a three-stripe system if cells outside of the original
system are considered to have no channel demands. Therefore,
it suffices to prove only the three-stripe case.

Let be a realization obtained from the SP algorithm.
If a color is used in a realization , let be the set
of vertices colored by in the . We claim that there exists
an MP realization such that

If this claim holds, we can use it to prove the theorem
statement by using the following induction argument: if
has only one color, then it must be an MP realization.
Suppose the theorem statement holds for all SP realizations
using colors. Now, consider a problem .
Suppose that and uses 1 and 1 colors

, respectively. Let be the first color used in the
SP algorithm. For each vertex in , subtract one from
the corresponding component of the original requirement
to obtain . By the definition of the SP algorithm, the
realization it yields for is equivalent to

without and, hence, requires colors. If the claim
holds, MP will use colors for the reduced problem . By
the induction assumption, is the minimal number of color
needed for and, hence, must be equal to. So, uses

1 colors, and this shows that is also MP.
Before proving the claim, we note that for a three-stripe

system and a cluster size of seven, cells (vertices) colored by
the same color can be labeled in a left–right order , with
no ambiguity (see Fig. 8). Let be the succeeding vertex
of in , if it exists. Similarly, define to be the
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Fig. 8. If v1; v2; v3; and v4 are colored byca, then Sa = (v1; v2; v3; and v4).

Fig. 9. The cases, wherejN(vk) \ F j < jN(vj) \ F j. The denial area is shaded. Trivial cases, wherevk is further away fromvi, are not shown.

preceding vertex of in , if it exists. Notice that the order
induced by is not necessarily identical to the order how
the SP algorithm assigns the vertex to color. However, for
a three-stripe system with cluster size of seven, the following
property , follows from the definition of the SP procedure
and the geometry of the three-stripe system.

Suppose that vertex is assigned before vertex. If
and is not empty, then is

the first node on the right-hand side of that is assigned
after . Similarly, if and is
not empty, then is the first node on the left-hand side of

that is assigned after .
Suppose that, according to SP, vertexis the first vertex

colored by . Notice that there exists an MP realization
in which is colored by since must be colored by at
least one color and one can relabel one of the colors to.
If the vertices referenced by for both realizations are
identical for all integer , then the claim holds. Suppose, on
the other hand, that is the integer with the smallest absolute
value, such that the vertices referenced by are not
identical for the two realizations. First, assume thatis positive
and for and refers to and , respectively,
with . We claim that one can construct another MP
realization so that all the vertex assignment to the left
of and up to are identical for and , and

for refers to .
For notation simplicity, let us denote by . This

node is colored by in both realizations. Notice that if
is well defined for , but not for , then one can pick
an arbitrary color used for in and replace it with

. This defines the new realization as claimed. On the
other hand, if is well defined for , it must be also
well defined for due to the nature of the SP algorithm,
which stops the assignment of a color only when there is no
candidate cell available. Hence, we may assumeand are
well defined.

If is also colored by in the SP realization, then
is not contained in , and it must be on the right-hand
side of . Hence, one can use to color in without
causing any violation with cells on the right-hand side or the
conjugate cell of . There is also no violation on the left-
hand side of because the first cell on the left-hand side of

colored by in is . Hence, we can assume thatis
colored by in with . Without loss of generality,
we may assume that is also colored by in .

Let denote the set ofdenial areajust before the assign-
ment to is made in the SP algorithm. Notice that

If not, then will be picked by the SP algorithm to be colored
by . There are two possible cases for further consideration.

Case 1) : Due to the special
topology of a three-stripe, the condition implies

. Recall that
both and are on the right-hand side of. It
follows that for all
possible (see Fig. 9). Hence, if an arbitrary color
can be used to color in a realization, it can also
be used to color without causing any violation
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Fig. 10. Let the shaded cells be the denial areaF . The only possible
locations forvj and vk are shown.

Fig. 11. SP realization may not be optimal in a four-stripe cellular system.

TABLE IV
THE REALIZATION OF SP AND MP FOR

THE EXAMPLE SHOWN IN FIG. 7

for vertices on the left-hand side of . Perform a
swapping operation Swap on .
This operation does not cause any violation. The
resulting realization is , which satisfies the
claimed property.

Case 2) : Let be the subgraph
induced by the vertex set . In
this case, , otherwise
will be colored by instead of . If

, we can perform the operation
Swap as in Case 2). So, it is only
necessary to consider the complementary situation.

Now, suppose that . The only
possible locations for and are shown in Fig. 10. From
the figure, it is clear that and are the only cells on the
left-hand side of and , which may experience a violation
if a swapping operation Swapis performed.

If , then in , is colored by more colors than
. Therefore, we can find a color, say, that is used to color

, but not . Then, we can perform Swap as
before to obtain .

On the other hand, if , then due to the fact
and

. In , one of the colors assigned to is
, and cannot be assigned to. Therefore, we can always

find a color, say , in , which is not assigned to . Hence,
the operations Swap and Swap
can be applied to . Notice that the operation Swapdoes
not alter the vertices, which are colored by, and so will not
affect the previous coloring of . The resulting realization is

.
Hence, in both cases, we can find with the claimed

property. Repeating this argument if necessary for the case,
where is negative, one can then guarantee that there is an MP
realization, which has an identical sequence of vertices
as up to . Hence, there exists an MP realization,
which has the same set of vertices colored byas , and
this proves the claim. As a result, the theorem is proved.

This theorem cannot be generalized to an-stripe system for
3. This can be seen from the example shown in Fig. 11

(originally due to Keeler [11]). As before, we assume a reuse
factor of seven. Table IV shows that SP uses five colors, while
MP uses only four. So, the SP realization is not optimal. It has
been shown that MP is NP hard. Since SP is a polynomial time
algorithm, this should not come as a surprise.
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