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Abstract—In this paper we investigate the identification and
synchronization problems on a multiple access collision channel.
Following Massey’s lead, solutions to these problems are ad-
dressed by protocol sequences. This paper considers two different
levels of user synchroneity: frame-synchronous access and slot-
synchronous access. For the identification problem, we study
user-detectable sequences. These are sequences with the cross-
correlation property that allows each active user be detected
within a bounded delay basing only on the channel activity
information observed. Furthermore, we investigate the synchro-
nization problem for delay-detectable sequences under the slot-
synchronous access assumption. The goal of the synchronization
problem is to determine the offset relations among all the active
users. Sequences that allow such determination can be viewed
as a special subset of user-detectable sequences. For both of
these sequence families, it is desirable that the sequence length
should be as short as possible. Hence, it is important to derive
the minimum sequence lengths for these respective families. This
is an extremely difficult open problem. Nevertheless, lower and
upper bounds on these minimum lengths are presented in this
paper under different levels of synchroneity assumptions. In
addition, the performance of these sequences is demonstrated
via numerical simulation.

Index Terms—Collision channel without feedback, protocol se-
quences, superimposed code, user-irrepressible sequences, optical
orthogonal code.

I. INTRODUCTION

A. Motivation

MASSEY and Mathys introduced a model of the multi-
ple access collision channel without feedback in [1]

and [2]. The model involves T potential users aiming to
transmit to a single receiver over a time-slotted channel. It
is assumed that at most M (M ≤ T ) users may be active at
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the same time. The signal transmitted by each user is modeled
by a fixed-length packet, which occupies exactly one time slot.
If two or more users send simultaneously, a collision occurs
and all involved packets are lost. If exactly one user transmits,
the packet can be received correctly.

In multiple access transmission, three tasks are commonly
encountered [3]–[6]:

(i) to detect active users (identification),
(ii) to determine the sender and value of each successful

received packet (decoding), and
(iii) to find their delay offsets (synchronization).
In this paper we investigate the identification problem and
the identification-cum-synchronization problem on a collision
channel. The latter is also known as signature coding. Since
this paper does not deal with the coding/decoding issues, we
will assume that there is no user payload in a packet. This
is not simply a matter of convenience. In fact, in the next
subsection we present applications examples which require
no user payload and can be modeled as a signature coding
problem. In such a model, at each time slot each user either
transmits a signal pulse or else remains silent. So the length
of a packet in a time slot can be regarded as 1 bit and we
can define the channel-activity signal of the collision channel,
c(t), as follows:

c(t) =

⎧⎪⎨
⎪⎩

0 if no user transmits at slot t,

1 if exactly one user transmits at slot t,

∗ if more than one user transmit at slot t.

As presented in [3]–[5], the identification and synchroniza-
tion problems are addressed by assigning each user a distinct
deterministic binary sequence rather than random coding. We
call it a protocol sequence [2]. An active user transmits if the
value “1” is read in the assigned sequence and keeps silent
if “0” is read. It is possible for an active user to become
inactive and vice versa. However, we assume that an inactive
user must remain inactive for at least the length of a protocol
sequence before becoming active. It is noted that such solution
also applies in the OR channel paper [7] as well as for the
signature coding papers [6], [8], [9]. In this paper, we use the
word “length” and “period” of a sequence interchangeably.

Furthermore, the following two different levels of syn-
chroneity are studied:

(i) Frame-synchronous access: each active user starts its
sequence period at the same slot;

(ii) Slot-synchronous access: each active user starts its se-
quence period at the beginning of a time slot that is
chosen randomly so that the offset delay between any
two overlapping active users is uniformly distributed.
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To the authors’ knowledge, in the literature there is no study
on the minimum length of sequences which can be used to
address the identification and synchronization problems of a
collision channel. This paper is an attempt to investigate the
lower and upper bounds of the minimum length under frame-
synchronous or slot-synchronous access assumption. Effects
of the assumption on synchroneity are also examined.

B. Applications

The identification problem plays a fundamental role in
many practical scenarios, some of which relating to wired
communication were mentioned in [8], [9]. More examples
can be found in [9] including file retrieval, login in mobile
telecommunications systems and non-adaptive hypergeometric
group testing.

Sensor alarm. Consider an area monitored by a sensor
network which consists of several alarm sensors and one data
sink. If one or more intruders enter the area, multiple alarms
may be triggered. Solving the identification problem arising
from the sensor signature coding problem enables the data sink
to determine more precisely the locations where the intrusions
have occurred.

Another interesting potential application of the identifica-
tion problem is multilevel expurgated pulse-position modula-
tion (MEPPM) [10] for visible light communications (VLC).

MEPPM. In MEPPM for VLC, the low-cost LED is
exploited. Balanced incomplete block designs (BIBD) are
used to construct the symbol alphabet of an LED array. It is
assumed that all LEDs are frame-synchronous. The receiver
can distinguish multiple power levels of light intensity and its
task is to demodulate the received signal to the original BIBD
codewords. In a collision channel the receiver can detect three
levels of energy: {0, 1, ∗}. Thus the identification problem in
a frame-synchronous system discussed in this paper can be
employed to address the MEPPM decoding.

For the synchronization problem, one application is target
tracking by detecting energy pulses coming from multiple
distributed sources. This application was introduced in [5].

Tracking. In a multi-static radar system, each transmitting
source sends multiple pulses according to its assigned protocol
sequence. If the sequences have the synchronization ability,
then the detector can capture the exact sending time of each
transmitting source’s pulse train. The information can be
utilized for more accurate tracking of the targets.

C. Related Work

For a collision channel, there is no study focusing merely
on the identification and synchronization problems. They are
usually investigated together with packet decoding. (See [3]–
[5], [11], [12].) L. Györfi and S. Györi presented asymptotic
lower and upper bounds on the minimum sequence length
for frame-synchronous access in [11]. They further gave the
bounds for slot-synchronous access in [12]. However, the
proof relies on the random coding rather than deterministic
protocol sequences and thus the results only hold for T
approaching infinity. References [3]–[5] provided several con-
crete constructions for slot-synchronous access, but decoding
and throughput are the primary objects of investigation.

The notion of identification under frame-synchronous ac-
cess is also addressed in another context for an OR chan-
nel, under the name superimposed code [8] and cover-free
families [13]. There are only two values, 0 and 1, in the
channel-activity signal of the OR channel considered signi-
fying whether a time slot contains no entry of value “1”
or at least one such entry. Interested readers are referred
to [9] for a survey of known results in the literature. The
same problem has also been extensively studied in the adder
channel [14], [15] in which a tight asymptotic lower bound
2M/ logM on the minimum sequence length was established.
The channel-activity signal of an adder channel includes
different M + 1 integers signifying exactly the number of
transmitted users in a time slot. From the channel-activity
signal, one sees both of these problems are very different from
the identification problem under frame-synchronous access for
a collision channel as discussed here. For slot-synchronous
access, an asymptotic upper bound for T approaching infinity
on minimum sequence length was derived in [6] for both the
synchronization and identification problems in an OR channel.

D. Key Contributions

The special case T = M ≥ 2 is considered in this paper, as
adopted in [2]. For the identification problem, our goal is to
find protocol sequences that allow any user be detected from
the channel-activity signal if and only if it has become active.
Such a protocol sequence set is said to be user-detectable
(UD). For the synchronization problem, a sequence set is said
to be delay-detectable (DD) if it allows the relative delay
offset of any active user be detected from the channel-activity
signal. We note that the synchronization problem is trivially
solved under the frame-synchronous access assumption, since
all active users start their sequences at the same slot. In other
words, a UD sequence set must be DD in this case.

The following are three major objects of this paper:
(i) Lsyn(M), the smallest sequence length of a UD sequence

set for M users under the frame-synchronous assumption;
(ii) Lasyn(M), the smallest length of a UD sequence set for

M users under the slot-synchronous assumption;
(iii) and Ld

asyn(M), the smallest length of a DD sequence set
for M users under the slot-synchronous assumption.

We also summarize the key contributions as follows:
(1) In Section III, we establish a lower bound on Lsyn(M).

An upper bound and its corresponding construction are
also given.

(2) Lower and upper bounds on Lasyn(M) are presented in
Section IV. In addition, we provide a detecting algorithm
by which the receiver can detect each active user.

(3) In Section V, we establish an upper bound on Ld
asyn(M).

We also propose an algorithm for solving the synchroniza-
tion problem.

(4) Simulation results are presented in Section VI in order to
provide information on the performance of the proposed
identification algorithm.

II. DEFINITIONS AND NOTATIONS

Given a binary sequence s(t), t = 0, 1, . . . , L−1, of length
L, we define its Hamming weight as w(s) :=

∑L−1
t=0 s(t). A
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TABLE I
KEY NOTATIONS AND DEFINITIONS.

w(s) The Hamming weight of s
Is The characteristic set of s

s(τ) The cyclic shift of s by τ
s1 ∨ . . . ∨ sM The logical OR of s1, s2, . . . , sM

s1 � ∨M
i=2 s

(τi)
i s1 is blocked by s2, . . . , sM

s1 � . . . � sM The erasure sum of s1, s2, . . . , sM
Hs1s2 The Hamming crosscorrelation between s1 and s2
Hs1s1 The Hamming autocorrelation of s1

sequence set is said to be constant-weight if all sequences have
the same Hamming weight.

Let the cyclic shift of a sequence s by relative shift τ be
denoted by s(τ)(t) := s(t − τ). The subtraction t − τ is
performed modulo L.

A sequence can also be represented by a characteristic set
I, which is defined as the set of all time indices in a period
where the value of the protocol sequence is equal to 1. Cyclic
shift of a sequence by integer τ is equivalent to adding τ
modulo L to the corresponding characteristic set.

The logical OR of M binary sequences of length L is
defined as a binary sequence of length L which has 0 in the
k-th position where all sequences have 0 in this position, and
1 otherwise, for k = 0, 1, . . . , L − 1. We denote the logical
OR of s1, s2, . . . , sM by s1 ∨ s2 ∨ . . . ∨ sM .

We write s1 � (s2∨. . .∨sM ) if s1∨s2∨. . .∨sM = s2∨. . .∨
sM . The sequence s1 is said to be blocked by s2, s3, . . . , sM ,
if we can find delay offsets τi for i = 2, . . . ,M , such that
s1 �

∨M
i=2 s

(τi)
i .

The erasure sum of M binary sequences of length L is
defined as a sequence of length L which has 0 in the k-
th position where all sequences have 0 in this position, 1 if
exactly one sequence has 1 in this position, and erasure symbol
* otherwise, for k = 0, 1, . . . , L − 1. We denote the erasure
sum of s1, s2, . . . , sM by s1 � s2 � . . . � sM .

Given two sequences s1(t) and s2(t), the Hamming cross-
correlation function between s1 and s2 is defined by

Hs1s2(τ) :=

L−1∑
t=0

s1(t)s2(t− τ).

If s1(t) = s2(t), the crosscorrelation is reduced to the
autocorrelation of s1 or s2.

We list the key notations and definitions of this section in
Table I. For illustration, consider the following sequence set:

s1 = [10101010]

s2 = [11001100]

s3 = [10111000].

The characteristic set is Is1 = {0, 2, 4, 6}, Is2 = {0, 1, 4, 5}
and Is3 = {0, 2, 3, 4}. We have w(s1) = w(s2) = w(s3) = 4.
Also s

(2)
2 = [00110011] and s1 ∨ s(2)2 = [10111011]. Then we

have s3 � s1 ∨ s(2)2 and thus s3 is blocked by s1 and s2. One
can also check that s1 � s2 = [∗110 ∗ 110] and Hs1s2(2) = 2.

III. FRAME-SYNCHRONOUS ACCESS

We make the following formal definition of a UD sequence
set under frame-synchronous access.

Definition 1. A set of M sequences is said to be UD under
frame-synchronous access, if all erasure sums of up to M
sequences are distinct, i.e.,⊎

i∈A
si �=

⊎
j∈B

sj (1)

for any subsets A,B ⊆ {1, 2, . . . ,M} and A �= B.

By the above definition, a lower bound on sequence length
can be computed simply by using the fact that since each
erasure sum of at most M sequences must be distinct, the total
number of erasure sums in a UD set cannot exceed the number
of L-digit ternary numbers. The total number of erasure sums
we need to distinguish is 2M because all subsets are possible,
while the total number of observable channel outputs is 3L.
Thus following 3L ≥ 2M we have

Lsyn(M) ≥ log 2

log 3
M ≈ 0.631M.

To prove a tighter lower bound on Lsyn(M), we need the
following definition and lemma.

Definition 2. Given a sequence set {s1, s2, . . . , sM}, if
si(k) = 1 and the erasure sum of {s1, s2, ..., sM} \ {si}
at the k-th position is equal to 0 or 1, then we say that
the k-th position is exceptional for si. The collection of all
exceptional positions of si is denoted by Esi . Obviously, we
have Esi ⊆ Isi .
Lemma 1. If a sequence set S = {s1, s2, . . . , sM} is UD
under frame-synchronous access, then we have

(i) |Esi | ≥ 1 for any i;
(ii) Esi �= Esj for any i �= j.

Proof: (i) Suppose |Esi | = 0, i.e., for all t such that
si(t) = 1 the erasure sum of remaining sequences at time t is
∗, then the following result holds:⊎

u∈{1,2,...,M}\{i}
su =

⊎
u∈{1,2,...,M}

su.

This contradicts the definition of UD sequences for frame-
synchronous access in (1).

(ii) Suppose Esi = Esj for some i �= j. Let ei be the erasure
sum

ei :=
⊎

u∈{1,2,...,M}\{i}
su

and ej be the erasure sum

ej :=
⊎

u∈{1,2,...,M}\{j}
su.

We will show that the sequence set S is not UD by proving
ei = ej . Obviously, we have ei(t) = ej(t) if t is not in
Isi ∪ Isj . For t ∈ Isi ∪ Isj , we have

ei(t) = ej(t) =

{
1 if t ∈ Esi = Esj ,
∗ if t ∈ Isi \ Esi or t ∈ Isj \ Esj .

This completes the proof of Lemma 1.
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Example 1: The following is a UD sequence set under
frame-synchronous access with M = 3, L = 3.

s1 = [101]

s2 = [111]

s3 = [011]

The first position is exceptional for both s1 and s2. The second
is exceptional for both s2 and s3. The third is not exceptional
for any sequence. One can check its structure is in accordance
with Lemma 1.

We can establish the next theorem by means of Lemma 1.

Theorem 2. For any M ≥ 2,

Lsyn(M) ≥ 2M

3
.

Proof: Denote |⋃i∈{1,2,...,M} Esi | by nE . Let h be the
number of the sequences which all have exactly one ex-
ceptional position. Then following (i) of Lemma 1 and the
definition of exceptional position we have∑

i∈{1,2,...,M}
|Esi | ≥ h+ 2(M − h). (2)

On another hand, we also have∑
i∈{1,2,...,M}

|Esi | ≤ 2nE . (3)

This inequality follows from the fact that the exceptional
positions of all the sequences are located in

⋃
i∈{1,2,...,M} Esi

and one exceptional position is occupied by at most two
sequences simultaneously. After substituting (3) into (2), we
further obtain

h ≥ 2M − 2nE . (4)

Next we derive an upper bound on h. Suppose h ≥ nE +1.
By pigeonhole principle we always can find Esi = Esj for
some i �= j. It contradicts (ii) of Lemma 1 and thus we have

h ≤ nE . (5)

After combining (4) and (5), we obtain nE ≥ 2M/3. It implies
L ≥ 2M/3, since the length must be not smaller than nE .

For upper bound on Lsyn(M), we show a trivial construc-
tion for M users with length L = M : for i = 1, 2, . . . ,M , let
si(t) = 1 if and only if t = i. This sequence set enjoys the
property (1), and thus we have

Lsyn(M) ≤M

which is also the tight upper bound in OR channel [16]. To
close the gap between 2M/3 and M for a collision channel
is an interesting direction for future works.

IV. IDENTIFICATION FOR SLOT-SYNCHRONOUS ACCESS

In subsequent discussion, we make use of the following
formal definition of UD sequences under slot-synchronous
access.

Definition 3. A set which has M sequences of length L is
said to be UD under slot-synchronous access, if every erasure

sum of up to M sequences of any relative shifts is distinct
from every other sum of M or fewer sequences of any relative
shifts, i.e., ⊎

i∈A
s
(τi)
i �=

⊎
j∈B

s
(τj)
j (6)

for any subsets A,B ⊆ {1, 2, . . . ,M}, A �= B, |A| ≥ |B| and
any integer τ1, τ2, . . . , τM . The defining property (1) under
frame-synchronous access is a special case of (6) with τ1 =
τ2 = . . . = τM = 0.

The objective of computing the minimum delay is compli-
cated. In order to provide a deeper understanding of it, we
present in this section lower and upper bounds on Lasyn(M).

A. Lower Bound on Minimum period

We obtain Lasyn(2) ≥ 2 from Theorem 2 since frame-
synchronous access is a special case of slot-synchronous
access. The lower bound in this case can be achieved through
assigning s1 = [11], s2 = [10]. Furthermore, we will use
the following result from [17] to derive a lower bound on
Lasym(M) for M > 2.

Theorem 3. [17] Let S ′ be a set of M ′ (not necessar-
ily constant-weight) binary sequences of length L. If L <
8(M ′)2/9, then there exist the relative delay offsets of the
sequences such that the sequence with minimum Hamming
weight in S ′ is blocked by the other sequences in S ′.

From Theorem 3, we can deduce

Theorem 4. For any M ≥ 3, we have

Lasyn(M) ≥ 8
M/2�2
9

.

Proof: Let S be a sequence set consisting of sequences
s1, s2, . . . , . . . , sM , with sequence length strictly less than
8
M/2�2/9. After re-labeling the sequences if necessary, we
assume without loss of generality that s1 is a sequence of
minimum Hamming weight in S.

Let M ′ be the the integer 
M/2�, and consider the se-
quences s1, s2, . . . , sM ′ . By Theorem 3, we can arrange the
relative delay offsets of these M ′ sequences such that s1 is
blocked by some shifted versions of s2, . . . , sM ′ , i.e., there
exist τ2, τ3, . . . , τM ′ such that

s1 � s
(τ2)
2 ∨ s

(τ3)
3 ∨ · · · ∨ s

(τM′)
M ′ .

Likewise, if we apply Theorem 3 to sequences

s1, sM ′+1, sM ′+2, . . . , sM ,

we can find relative delay offsets τM ′+1, τM ′+2, . . . , τM such
that

s1 � s
(τM′+1)

M ′+1 ∨ s
(τM′+2)

M ′+2 ∨ · · · ∨ s
(τM)
M .

Hence, the erasure sum

s1 � s
(τ2)
2 � s

(τ3)
3 � · · · � s

(τM )
M

is the same as the erasure sum

s
(τ2)
2 � s

(τ3)
3 � · · · � s

(τM)
M .
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This violates the property (6) and thus proves that the sequence
set S is not UD under slot-synchronous access.

Example 2: One can check the following sequence set with
M = 3, L = 4:

s1 = [1100]

s2 = [1010]

s3 = [1110]

is UD under slot-synchronous access, and its sequence length
achieves the minimum value for M = 3 in Theorem 4.

B. Upper Bound on Minimum period

In this subsection, we will show some special classes of
sequence sets that are UD under slot-synchronous access. We
need to recall the following definition:

Definition 4. A sequence set is said to be user-irrepressible
(UI) [18] if each sequence is not blocked by other sequences
no matter what the relative offsets are.

Theorem 5. A sequence set is UD under slot-synchronous
access if it is UI.

Proof: Suppose that a set of M sequences is UI but
not UD under slot-synchronous access. Then there exist two
subsets A = {si1 , si2 , . . . , sik} �= {sj1 , sj2 , . . . , sjl} = B
such that

s
(τi1)

i1
� s

(τi2 )

i2
� . . . � s

(τik )

ik
= s

(τj1)

j1
� s

(τj2)

j2
� . . . � s

(τjl )

jl

for some {τi1 , τi2 , . . . , τik} and {τj1 , τj2 , . . . , τjl}. It implies

s
(τi1 )

i1
∨ s

(τi2)

i2
∨ . . . ∨ s

(τik )

ik
� s

(τj1 )

j1
∨ s

(τj2 )

j2
∨ . . . ∨ s

(τjl )

jl
.

Due to A �= B and |A| ≥ |B|, we can always find a sequence,
say su, su ∈ A but su /∈ B, such that

s(τu)u � s
(τj1)

j1
∨ s

(τj2 )

j2
∨ . . . ∨ s

(τjl )

jl
.

This contradicts the definition of UI sequence set. Thus a UI
sequence set must be UD under slot-synchronous access.

By means of Theorem 5, UD sequences under slot-
synchronous access can be designed relying on the UI prop-
erty. We introduce the shortest known general constructions
below, which are both based on the Chinese remainder the-
orem (CRT). The mapping f : Zpq → Zp ⊕ Zq defined
by f(a) := (a mod p, a mod q) is a bijection from Zpq to
Zp⊕Zq when p and q are relatively prime [19], and preserves
addition and multiplication by integers.

CRT Construction [20]: Given M , we set q to be 2M−1,
and p any prime larger than or equal to M and relatively
prime to 2M − 1. For j = 0, 1, . . . ,M − 1, we let I ′sj :=
{(jy, y) ∈ Zp⊕Z2M−1 : y = 0, 1, . . . ,M−1} and obtain the
characteristic sets Isj , by taking the inverse image f−1(I ′sj )
for j = 0, . . . ,M−1. These M sequences compose a constant-
weight UI sequence set.

CRTp Construction [17]: This construction is a variation
of CRT construction. We set p any prime larger than or equal
to M and q to be 2p−2. We let I ′s0 := {(y, 0) ∈ Zp⊕Z2p−2 :
y = 0, 1, . . . , p− 1} and I ′sj := {(jy, y) ∈ Zp ⊕Z2p−2 : y =
0, 1, . . . , p} for j = 1, . . . ,M − 1. These M sequences form
a UI sequence set, but not constant-weight.

TABLE II
THE SHORTEST KNOWN PERIOD OF UI SEQUENCES

M Shortest known period

2 ≤ M ≤ 6 2M

M = 7 84
M = 8 153

M ≥ 9, non-primeM pM (2M − 1)
M ≥ 9, primeM pM (2pM − 2)

The following upper bound is guaranteed by the CRT and
CRTp constructions.

Theorem 6. Let pM denote the smallest prime larger than or
equal to M . For any M ≥ 3, we have

Lasyn(M) ≤ min
(
pM (2M − 1), pM (2pM − 2)

)
.

For 2 ≤ M ≤ 6, the shift-invariant property [21] produces
the shortest known UI set of the period 2M . For M = 8,
the shortest known period is obtained by computer searching.
However, in the other cases, CRT and CRTp constructions
yield the shortest known sequence length for non-prime M
and prime M , respectively. We list them in Table II.

We have proved in [17] that the period of UI sequence set
with M sequences is at least 8M2/9. Thus UD sequence sets
under slot-synchronous access which are not UI with sequence
length between 8
M/2�2/9 and 8M2/9 may be a potential
direction for seeking sequence sets with shorter period. One
can check the sequence set in Example 2 is UD under slot-
synchronous access, but not UI.

C. Detecting Algorithm

Definition 5. We say that c(t) is matched to si at time t0 if
∀t = 0, 1, . . . , L− 1, si(t) = 1⇒ c(t0 + t) = 1 or ∗. Let αi

be the smallest integer such that si(t) = 0 if αi < t ≤ L− 1.
The starting time tsi is used to denote the time index when
user i becomes active, i.e., begins to send its sequence. The
ending time tsi +αi represents the time index of the last bit 1
in a sequence period of user i. The alarming time tai (tai ≥ tsi )
is the time index when the first matching of user i is detected
by the receiver.

We now introduce the detecting algorithm used for a UI
sequence set. The receiver observes the channel all the time
and tracks the set of active users by M Boolean variables
activei for i = 1, 2, . . . ,M . The values are set to FALSE

initially. In each slot, the receiver checks whether c(t) is
matched to si or not. To determine whether c(t) is matched
to si at some time index t0, it is necessary for the receiver to
know all values of c(t0), c(t0+1), . . . , c(t0+αi). The receiver
would make the decision at t0+αi. If there is a matching at t0,
then activei is set to TRUE. Otherwise, we would set activei
as FALSE. In other words, whether there is a matching with
si(t) is determined slot by slot through a sliding window of
αi + 1 slots. We summarize the procedure in Algorithm 1.

Theorem 7. Assign a UI sequence set of M sequences to user
1 to M . Then under slot-synchronous access Algorithm 1 can
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Algorithm 1 Detecting algorithm for a UI sequence set
1: for i = 1, 2, . . . ,M do
2: for t0 = 0, 1, 2, . . . do
3: if c(t) is matched to si(t) at t0 then
4: activei ← TRUE

5: else
6: activei ← FALSE

7: end if
8: end for
9: end for

successfully identify user i not later than tsi + αi if and only
if user i becomes active at tsi .

Proof: Consider user i and its assigned sequence si. Let
it become active at tsi . Suppose there exists a matching of si
at t0 with t0 > tsi +αi or t0 < tsi −αi. By the condition of t0,
we know user i actually does not transmit in the time interval
[t0, t0 + αi]. Hence we find all non-zeros in [t0, t0 + αi] are
contributed by some other users. By the definition of matching,
we further obtain that si can be blocked by other sequences,
which contradicts the condition that the assigned sequence set
is UI. Thus the matching of si can only possibly exist in
[tsi − αi, t

s
i + αi]. This suffices to show that user i would be

identified by Algorithm 1 only if it has become active. On
another hand, the receiver can always find c(t) is matched to
si(t) at tsi , i.e., identify user i at tsi + αi. Therefore we can
conclude that Algorithm 1 can successfully identify the active
user i with αi slots delay in the worst case.

Example 3: By the CRT construction, for M = 3 we can
design the UD sequence set under slot-synchronous access
with L = 15 below:

s1 = [100000100000100]

s2 = [111000000000000]

s3 = [100010001000000].

If the starting time of these users are 0, 6 and 5, respectively,
we have the following case to make the user-detection. Se-
quence periods are indicated by underbrace.

User 1: 100000100000100︸ ︷︷ ︸100000100000100︸ ︷︷ ︸00000
User 2: 000000111000000000000︸ ︷︷ ︸00000000000000
User 3: 00000100010001000000︸ ︷︷ ︸100010001000000︸ ︷︷ ︸
c(t) : 100001∗1110011010000110010011000000

One can check c(t) is matched to s2(t) at t = 5, 6, 7,
respectively, which are indicated by underline. Since α2 = 2,
the receiver would set active2 as TRUE when t = 7, 8, 9,
which are indicated by overline. Thus the receiver cannot
know the exact starting time of user 2. The detecting procedure
is presented in Fig. 1.

V. SYNCHRONIZATION FOR SLOT-SYNCHRONOUS ACCESS

We present the formal definition of DD sequence set under
slot-synchronous access as follows.

Definition 6. A set which has M sequences of length L is
said to be DD under slot-synchronous access, if every erasure

s1(t) s1(t)

s2(t)

s3(t)

c1(t)

c2(t)

c3(t)

c(t)
The sliding window of s2(t)

s3(t)

Fig. 1. The receiver tries to match c(t) with s2.

sum of up to M sequences of some relative shift is distinct
from (i) the same sequence set with any other relative shift and
(ii) every other sum of M or fewer sequences of any relative
shifts, respectively, i.e.,⊎

i∈A
s
(τi)
i �=

⊎
j∈B

s
(τ ′

j)

j (7)

for any subsets A,B ⊆ {1, 2, . . . ,M} with |A| ≥ |B| and
any integer τ1, τ ′1, τ2, τ ′2, . . . , τM , τ ′M , such that A �= B or
A = B with {τi : ∀i ∈ A} �= {τ ′j : ∀j ∈ B}. Obviously, the
UD property under slot-synchronous access is a special case
here by setting A �= B in (7).

As a DD sequence set must be UD under slot-synchronous
access, Theorem 4 gives us a lower bound on Ld

asyn(M) too.
In this section we focus on its upper bound.

A. Upper Bound on Minimum Period

In order to obtain an upper bound on Ld
asyn(M), a sufficient

condition for the DD property is presented below.

Theorem 8. A sequence set is DD under slot-synchronous
access if any sequence is not blocked by other sequences and
its non-zero shifted version, i.e.,

si �
∨

j∈{1,2,...,M}
s
(τj)
j (8)

for any i and any τj with τi �= 0.

Proof: We prove this theorem by contradiction. Suppose
a sequence set satisfying (8) is not DD. Then for some A �= B
or A = B with {τi : ∀i ∈ A} �= {τ ′j : ∀j ∈ B} we can find⊎

i∈A
s
(τi)
i =

⊎
j∈B

s
(τ ′

j)

j . (9)

In the case of A �= B, the equation (9) implies we can
find one sequence, labeled as sg, g ∈ A, g /∈ B, such that

s
(τg)
g � ∨

j∈B s
(τ ′

j)

j since s
(τg)
g � ∨

i∈A s
(τi)
i � ∨

j∈B s
(τ ′

j)

j .
This further implies

sg �
∨
j∈B

s
(τ ′

j−τg)

j .

In the case of A = B, by the same reason we can also find
a sequence, labeled as sh, h ∈ A,B, such that

sh �
∨
j∈B

s
(τ ′

j−τh)

j
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with τh �= τ ′h.
The above two results both violate (8). Thus we conclude

that any sequence set satisfying (8) must be DD.

Definition 7. A family of binary sequences of length L and
Hamming weight w that satisfies the following two properties:

(i) the value of Hamming autocorrelation function of any
sequence is not bigger than λa for any non-zero τ
performed modulo L;

(ii) the value of Hamming crosscorrelation between any
distinct two sequences is not bigger than λc for any τ ,

is said to be an optical orthogonal code (OOC)
(L,w, λa, λc) [22].

Following Theorem 8, some known constructions of OOCs
can be applied to design DD sequences if w > (M−1)λc+λa.
We show here one example due to [23].

Theorem 9. [23] Let p be any prime number and m any
positive integer. Then there exists an OOC(p2m − 1, pm +
1, 2, 2) with pm − 2 codewords.

Example 4: For M = 4, by setting p = 2 and m = 3 in
Theorem 9, we obtain the following sequence set with L = 63:

Is1 = {0, 4, 7, 17, 27, 30, 34, 39, 58}
Is2 = {0, 5, 8, 14, 15, 34, 53, 54, 60}
Is3 = {0, 8, 21, 22, 24, 26, 27, 40, 48}
Is4 = {0, 5, 10, 16, 28, 30, 43, 45, 57}

which can be found DD under slot-synchronous access since
w = 23 + 1 > 3× 2 + 2.

Next we single out a special case of Theorem 9 for general
M and give an upper bound on Ld

asyn(M) which is roughly
equal to 4M2.

Theorem 10. Let p2M denote the smallest prime larger than
or equal to 2M . For any M ≥ 2, we have

Ld
asyn(M) ≤ p22M − 1.

Proof: By setting m = 1 in Theorem 9, we know there
exists an OOC(p22M −1, p2M +1, 2, 2) with M codewords as
p2M − 2 ≥M . Then we have w = p2M + 1 > (M − 1)λc +
λa by λa = λc = 2. Following Theorem 8, we thus obtain
this OOC is DD under slot-synchronous access. The sequence
length p22M − 1 gives the upper bound in Theorem 10.

B. Detecting Algorithm

The following algorithm was proposed in [3], [5], but indeed
can be applied for any sequence sets satisfying Theorem 8. The
procedure is basically the same as that in Algorithm 1: sliding
a window of αi+1 slots until there is a matching with si. Let
the integral variable starti represent the detection result when
user i starts its new sequence period. If c(t) is matched to si
at t0, then we have starti = t0. We summarize the procedure
in Algorithm 2 below.

Theorem 11. Assign a DD sequence set satisfying Theorem 8
to user 1 to M . Then under slot-synchronous access Algorithm

Algorithm 2 Detecting algorithm for DD sequence sets under
slot-synchronous access satisfying Theorem 8

1: for i = 1, 2, . . . ,M do
2: for t0 = 0, 1, 2, . . . do
3: if c(t) is matched to si(t) at t0 then
4: starti = t0
5: end if
6: end for
7: end for

2 can determine the starting time of active user i at tsi + αi

if it becomes active at tsi .

Proof: Consider that the starting time of active user i is
tsi , and is calculated as t0 by Algorithm 2. This implies the
matching of si occurs at t0. Suppose t0 �= tsi . Then we know
all non-zeros in c(t0), . . . , c(t0 +αi) are contributed by other
active sequences and a non-zero shifted version of si. Thus,
we find si can be blocked by other sequences and its non-zero
shifted version, which contradicts Theorem 8. We obtain that
tsi = t0, i.e., the exact starting time of user i can be determined
by Algorithm 2. Furthermore, by the definition of matching,
the matching of si at tsi can only be detected at tsi + αi.

Example 4 continued: Let the four users in Example 4 be-
gin to transmit their sequences, respectively, at t = 3, 7, 12, 25.
Then following Theorem 11, we know the receiver at the time
index 3+α1 = 61 would detect the event that c(t) is matched
to s1 at t = 3, i.e., start1 = 3 by Algorithm 2.

VI. PERFORMANCE STUDY

We are interested in the latency which is measured as the
time duration from the starting time of an active user to its
alarming time. Obviously, the latency is upper bounded by the
sequence period, which has been investigated extensively in
Section III-V. Recall that αi is the smallest integer such that
si(t) = 0 for all t if αi < t ≤ L−1. Under frame-synchronous
access, it is easy to see that the receiver knows that user i has
become active exactly at tsi + αi. For synchronization under
slot-synchronous access, by Theorem 11 we also obtain that
the latency of user i is exactly αi. However, for identification
under slot-synchronous access, the alarming time of user i may
be earlier than tsi +αi following Algorithm 1 and Theorem 7.
In order to explore the performance fluctuations of Algorithm
1, we thus investigate the latency in this case by simulation.

In the simulation study, we assume that there are M users
and the CRT protocol sequences are used to specify their
channel access permission time. Since users are not frame-
synchronized, there will be various combinations of starting
time. In the simulation, we assume that the relative time shift
between two users is uniformly distributed in their encountered
minimum period L = pM (2M − 1).

Fig. 2 shows the starting time, alarming time and ending
time of each user for M = 10 in a simulation running. It is
observed that for most users the alarming time is equal to the
ending time, i.e., the latency is equal to αi. Here, we have
{αi}10i=1 = {198, 9, 193, 197, 191, 199, 195, 196, 192, 180}
from the CRT construction.
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Fig. 2. The starting time, alarming time and ending time of each user in
a simulation running for an identification problem with M = 10 under slot-
synchronous access.

TABLE III
THE AVERAGE PERFORMANCE OF IDENTIFICATION UNDER

SLOT-SYNCHRONOUS ACCESS.

M ρ δ α L

9 5.6% 150.5 151.4 187
10 5.7% 173.8 175.0 209
11 5.6% 195.6 196.8 231
12 4.9% 256.8 258.0 299
13 5.1% 282.6 283.8 325
14 3.8% 398.9 399.8 459
15 3.9% 435.1 436.3 493
16 3.9% 470.6 472.0 527
17 3.9% 504.5 505.9 561
18 3.6% 601.6 603.0 665
19 3.6% 639.5 640.9 703
20 3.0% 815.9 817.3 897

Furthermore, we study the mean latency: 1
M

∑M
i=1(t

a
i − tsi )

of Algorithm 1 with respect to the user number. For each
M between 9 and 20, 100000 delay offset combinations
are randomly generated. δ, the average mean latency over
all these samples, is recorded in Table III compared with
α := 1

M

∑M
i=1 αi and the sequence period L. Results obtained

show that δ < α < L for any M and δ, α, L all become
larger when M increases, as expected. We also compute the
proportion ρ for each M : the ratio between the number of
cases in which the latency of user i is strictly smaller than αi

and that of all simulated cases: 100000M . Roughly speaking,
it becomes smaller when M increases as tabulated in Table III.

VII. CONCLUSION

This paper has investigated UD and DD sequences to
accordingly address the identification and synchronization
problems on a collision channel. In order to study how
deterministic guarantees can be offered, lower and upper
bounds on their minimum periods are both presented for
frame-synchronous and slot-synchronous access, respectively.
We summarize these bounds for large M in Table IV.

U
D

 sequences 
under fram

e-synchronous access

UD sequences 
under slot-synchronous access 

UI
sequences

Subsets of 
OOCs

DD sequences

Fig. 3. Relationships among UD, DD sequences and other sequence designs.

TABLE IV
LOWER AND UPPER BOUNDS ON THE MINIMUM PERIOD OF UD AND DD

SEQUENCES.

Lower bound Upper bound

UD seq. under frame-syn. access 2M/3 (Thm. 2) M
UD seq. under slot-syn. access 2M2/9 (Thm. 4) 2M2 (Thm. 6)
DD seq. under slot-syn. access 2M2/9 (Thm. 4) 4M2 (Thm. 10)

As illustrated in Fig. 3, we establish some interconnections
among UD, DD sequences and some other families of binary
sequences. A UD sequence set under slot-synchronous access
must be UD under frame-synchronous access by (1) and (6),
and meanwhile a DD sequence set must be UD by (6) and (7).
Furthermore, a UI sequence set is found UD from Theorem
6 and the OOCs with w > (M − 1)λc + λa can be used
to construct DD sequences from Theorem 8. These reported
results open up many interesting directions for future research,
for example, a construction of shorter UD sequences under
slot-asynchronous access which is not UI.

In addition, we propose Algorithm 1 and Algorithm 2 that
allow a receiver to solve the identification and synchronization
problems within some bounded delay by employing UD
and DD sequences, respectively. Simulation results are also
provided to help readers come to a better understanding of
their performance fluctuations.
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