
Distributed Load Balancing in a Multiple Server

System by Shift-Invariant Protocol Sequences

Yupeng Zhang and Wing Shing Wong

Department of Information Engineering

The Chinese University of Hong Kong

s0760929@cuhk.edu.hk, wswong@ie.cuhk.edu.hk

Abstract—Ideally, many application systems for distributed users

should be designed without requiring a centralized controller, for

example cloud computing or wireless sensor networks. A

fundamental challenge to developing distributed algorithms for

these systems is load balancing, which is the focus of study in this

paper. A common feature of these distributed algorithms is that

routing decisions should be derivable without requiring much

information from the system, probabilistic routing is one example

coming to mind. In this paper, we propose a new routing strategy

based on the idea of shift-invariant protocol sequences. We study

this load balancing approach in the context of a queuing model of

multi-server system. Our model and strategy can be applied to

many practical systems, including wireless networks. Numerical

studies were carried out to compare our strategy with other

routing strategies such as probabilistic routing and random

sequences routing. The results show that the proposed algorithm

has better performance than these strategies.

Keywords—Wireless sensor network; Multiple server system;

Distributed load balancing; Shift- Invariant Protocol Sequences

I. INTRODUCTION

Load balancing problem has been studied in many previous

works. Chow and Kohler [1] present a queuing model for a

heterogeneous multiple server system. In the model, an

arriving job is routed by a job dispatcher to one of parallel

servers. Different routing strategies are also studied in [1],

classified into two categories: deterministic and

nondeterministic. In deterministic strategies, an incoming job

is sent to a particular server to minimize or maximize the

expected performance of a related criterion function, such as

minimizing response time, minimizing system time or

maximizing throughput. In nondeterministic strategies, an

arriving job is sent to a server with certain probability, where

the routing decision is usually based on independent

probability distinctions. Performance of these strategies are

analyzed and compared in [1].

 Chow and Kohler [1] show that deterministic strategies

have better performance than nondeterministic strategies.

However, in deterministic strategies, there must be a central

controller to optimize their criterion function and the

computational complexity is usually high, especially in

systems with large number of servers. On the contrary, in

nondeterministic strategies, the packets are routed based on a

probabilistic routing matrix, which can be distributed to users

who are sending jobs to the multiple server system and no

central controller is needed. In this paper, we are focus on the

latter class of problems, which can be defined as “distributed

load balancing”.

Ni and Hwang [4] propose a recursive probabilistic routing

algorithm. It uses parameters of the system such as job

incoming rate and service rate to adjust probabilistic routing

matrix recursively to finally obtain an optimal matrix. Some

other previous work such as [6] and [7] are focused on how to

exchange information among users and servers to distribute

jobs evenly to all servers. It can be viewed as a trade-off

between performance and information.

In this paper, a model is presented to study the distributed

load balancing problem. There are three basic assumptions: (1)

users independently distribute their tasks to servers according

to pre-assigned binary sequences, which will be explained in

following section; (2) no real-time synchronization is required;

(3) there is no centralized controller after the initial sequences

assignment. These assumptions usually hold in wireless

networks without a centralized controller or base station and

do not provide guarantee that users are synchronized. Based

on these assumptions, a new strategy is proposed. It can be

shown that the performance of the proposed strategy is better

than probabilistic routing.

The strategy has many applications in practical systems. For

example, in some wireless sensor network, users transfer data

through different frequencies. As long as several users are

transmitting on the same frequency, packet collision may

occur and additional techniques such as slotted aloha should

be used to resolve the contention and the effective transmitting

time will increase. The different frequencies can be viewed as

different “servers” and the extra transmitting time when

frequency collision occurs can be estimated by queuing model.

Thus, the frequency allocation in a wireless sensor network

can be analyzed in the context of load distribution in our

multi-server model, and our strategy can help distribute

different frequencies to users evenly in order to reduce the

transmission time.

Section II presents the model of distributed load balancing

problems and defines the optimization function to make the

The work is supported by a grant entitled "Time Critical Applications over
a Shared Network" of the Shun Hing Institute of Advanced Engineering, The

Chinese University of Hong Kong.

978-1-4673-5939-9/13/$31.00 ©2013 IEEE978-1-4673-5939-9/13/$31.00 ©2013 IEEE

2013 IEEE Wireless Communications and Networking Conference (WCNC): NETWORKS2013 IEEE Wireless Communications and Networking Conference (WCNC): NETWORKS

1639

system performance robust. Section III introduces the shift

invariant protocol sequences studied in [2] and [3], and applies

them in the distributed load balancing problems. Section IV

shows the numerical results and the comparison among

different strategies. Section V concludes the paper.

II. SYSTEM MODEL

As shown in figure 1, there are L servers in the multiple

server system and K users are sending jobs to the system. We

assume that each user sends the same number of jobs to

servers each time slot and we use N to denote it. The pattern

for one user at one time slot can be represented by a binary

sequence, where the positions of 1s denote the servers selected

to send jobs to by this user. For example, if there are 6 servers,

user i sends 2 jobs at time slot t to server 1 and 2, we can use

the sequence (1,1,0,0,0,0)i

ts  to represent the case.

In order to distribute the jobs evenly, each user is required

to send jobs to different servers in different time slots, until all

servers are used once. Therefore, each user will follow a series

of sequences to send jobs and the positions of 1s in these

sequences should not overlap with each other. After using all

servers once, the user will go back to follow the same pattern

of sequences and thus the series is periodical. We define the

period as /P L N and to simplify the model, we assume L

is divisible by N . We define this series of sequences as
iS for

user i

1 2 1 2{ , ,..., , , ,..., ,...}.i i i i i i

i P pS s s s s s s (1)

For example, suppose there are 6 servers and 2 users and each

user sends 2 jobs every time slot. User 1 selects server 1 and 2

at the first time slot, server 3 and 4 at the second time slot and

server 5 and 6 at the third time slot. This scenario can be

represented as

1 {(1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......}S  . Similarly,

user 2 may follow

2 {(1,0,0,1,0,0),(0,1,0,0,1,0),(0,0,1,0,0,1),......}S  .

As there is no communication among different users,

jobs from different users may arrive at the same server in one

time slot. If more than one jobs are sent to the same server in a

time slot, we assume the queuing order for these jobs are

determined randomly. In our model, we only consider the

simplest case where one server will serve exactly one job per

time slot. Under this assumption, a stationary condition is that

K N L  and /P L N K  .

Moreover, as the users are independent, the time to start

sending jobs are not synchronized and thus we need to

introduce a time difference for each user when the whole

system starts. We define the rotation
iRS of

iS by

2 3 1 2 3{ , ,..., , , , ,......}.i i i i i i

i PRS s s s s s s (2)

Then we introduce the concept of a time difference

[0, 1]i P   for user i so that when the system starts, user

i follows
i rotations of

iS

1 2 1 2{ , ,..., , , ,......}.i

i i

i i i i i

i PR S s s s s s


   (3)

In the previous example, if
1 0  and

2 0  , two users will

just follow the sequences in
1S and

2S . However, if
1 0 

and
2 2  , the sequences for user 2 will

become {(0,0,1,0,0,1),(1,0,0,1,0,0),(0,1,0,0,1,0),......}

because user 2 already goes to the third sequence in
2S when

the system starts. Therefore, different combinations of

1 2(, ,...,)K    result in different queuing patterns for

servers.

For a particular combination of  , we can determine the

queuing pattern for all servers by the following notations. We

use ()i

ts l to represent the value of position l in i

ts . It is just

the number of job user i send to server l at time t (either 1 or

0). Note that ()i

ts l is dependent of  , and we use ()i

ts l instead

of
1 2(, , ,...,)i

t Ks l    here for short from; notations of ()tA l

and ()tQ l which are defined later should be interpreted

similarly. As one user only sends one job to a particular server

in one period, we have

1 1() () ... () 1.i i i

t t t Ps l s l s l      (4)

One user sends N jobs each time slot in total to all servers in

one period, so

() .i

t

l

s l N (5)

We further use ()tA l to denote the number of jobs server

l receives from all users at time t, thus ()tA l can be

computed directly from ()t

is l .

() ().t

t i

i

A l s l (6)

Similarly, we have

1 1() () ... () ;t t t PA l A l A l K      (7)

() .t

l

A l N K  (8)

As ()i

ts l is periodical,

() ().t t PA l A l (9)

Fig.1 Illustration of multi-server system model

1640

()tQ l is defined as the number of jobs queuing in server l

at time t, it can be expressed by the following formula,

provided that we let new jobs come and get served

immediately, then compute ()tQ l by

1() (()+ () 1) .t t tQ l Q l A l 

   (10)

()tQ l is also periodical except for the first P time slots. The

proof of this is given in Appendix A. That is,

() ().t t PQ l Q l when t P (11)

Finally, we can define an average waiting time for a

random job by
2

1 2

1

1 2

(, , ,...,)

(, ,...,) .

P

t K

l t P

w K

Q l

T
P N K

  

    
 

 
 (12)

As ()tQ l is computed under one particular combination of

shifts as defined by  , 1 2(, ,...,)w KT    can be represented as a

function of  .

We can use
1 2(, ,...,)w KT    to evaluate the performance

of the whole system and a desirable goal is to

minimize
1 2(, ,...,)w KT    . Obviously,

1 2(, ,...,)w KT    can

assume different values for different combinations of  , for a

fixed set of sequences allocated to users. Moreover, we cannot

predict the time differences  for all users in practice.

Therefore, we try to find a set of sequences to minimize the

possible maximum value of
1 2(, ,...,)w KT    among all

combinations of time differences  . That is, our goal is to

determine the

1 2

1 2
, ,...,

arg min(max((, ,...,))).
K

w K
S S S

T


   (13)

For example, suppose

1 {(1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......}S  and

2 {(0,0,1,1,0,0),(0,0,0,0,1,1),(1,1,0,0,0,0),......}S  , when

1 0  and
2 0  , no jobs will go to the same server at any

time slot and thus the waiting time (1,1) 0wT  . However,

when
1 2  and

2 4  , the sequences that two users follow

are exactly the same and the waiting time becomes much

worse (1,3) 0.5wT  . To determine the optimal strategy, we

only need to consider the worst case for each sequence set. For

example, in this example, the worst case over all shifts is

(1,3) 0.5wT  and this set of
1S and

2S is not the optimum.

To find the solution for the optimization problem (13),

we rely on the following theorem:

Theorem:
1 2

1 2

, ,...,

(, ,...,)
K

w KT C
  

    where C is a

constant for any sequences 1 2, ,..., KS S S .

The proof is in Appendix B.

Based on this theorem, as the sum of
1 2(, ,...,)w KT    is

constant, a shift invariant sequence set that yields the same
value for all  , if it exists, is optimal. In the next section, we

will show that such solution exists for some system parameters.

III. SHIFT INVARIANT PROTOCOL SEQUENCES

Protocol sequences are first proposed in [2] to be applied

in collision channel without feedback in wireless

communication. Users are arranged to send packets based on

the binary sequences allocated to them. If there are more than

one packet sent to a receiver simultaneously, collision occurs

and these packets are dropped. For users that cannot be

synchronized, the set of sequences should ensure that no

matter how the sequences are shifted, the number of collisions,

defined as “cross correlation” of the sequences, should be the

same. This kind of protocol sequence is called shift invariant

protocol sequences (SIS).

The conditions of the collision channel is quite similar to

the distributed load balancing model, so we try to apply the

protocol sequences to solve the optimization problem in our

model.

As the cross correlation of shift invariant protocol

sequences are the same among different shifts, and the

response time is related to the cross correlation, we find that

shift invariant protocol sequence is one of the sequence sets

that can make the response time equal among all shift patterns.

In other words, shift invariant protocol sequence is one of the

optimal solutions to (13).

Figure 2 shows one set of shift invariant protocol

sequences and the resulting routing patterns for different users.

Table I shows the response time for all  s, which is constant.

We further studied the case when all users use the sequences

for user 3 in previous case. Although the respond times for

some  s are smaller than that of shift invariant sequences, the

maximum one is much larger. Therefore, shift invariant

sequences set is one of the optimal solutions to (13) and thus

has a robust performance.

2

Figure 3

Figure 3

Fig.2 example of shift invariant protocol sequence

1641

TABLE I. AVERAGE RESPOND TIME FOR DIFFERENT 

However, the existence of shift invariant protocol

sequences depends on the value of server number L and

period P . For P users, the minimum value of L is PP .

When the number of servers does not satisfy the

requirements of shift invariant sequences, we propose a simple

way to generate a suboptimal sequence set. Note that if there

are two sequence sets
1S and

2S with same user number K and

period P , suppose their server numbers are
1L and

2L , we can

append
2S at the end of

1S and let them shift in their own

range with period P . In this way, we construct a new

sequence set for
1 2L L servers with the same user number

K and period P .

Therefore, if there is a shift invariant sequence set
LS for

server number L , we can generate optimal sequence set for

n L (where n is an integer) by adding n
LS together. Based

on it, for any server number PL P , we can firstly find the

shift invariant sequence set
PS for PP servers, and then define

a minimal shift invariant sequence set for L by adding
Ln

PS

together where
Ln is the maximal integer that satisfies

P

Ln P L  . For the remaining part, we currently append a

sequence set with same sequences for all users.

Figure 3 shows an example. For L = 30, K = 3 and P = 3,
we find the shift invariant sequence set for L = 27 and append
the same sequences for L = 3 at the end of sequences allocated
to each user.

IV. NUMERICAL RESULTS

The settings of our simulation are the same as mentioned

in section II. There are 27 servers and 3 users in the system

and each user sends 9 jobs to different servers every time slot.

We further introduce a parameter
sT to denote how long a

single job needs to be served. It is assumed to be one time slot

in previous part and it can vary from 1 to 1/3 in our

simulations. (Jobs will not cumulate if
sT is less than 1/3,

because even if a server receives 3 jobs in one time slot, it can

serve them all in that time slot). We compute average response

time for one job defined by (12). Three routing strategies are

compared in our simulation: probabilistic routing, random

sequence routing and shift invariant sequence routing.

In probabilistic routing, each user selects 9 different

servers out of 27 with equal probabilities among all servers in

each time slot to send jobs. Users behave independently

among different time slots and their routing strategies are not

affected by previous selections. In random sequence routing,

sequence sets defined by (1) are generated randomly and

allocated to users at the beginning. Users send jobs following

the sequence sets in one period P = 3 time slots. Then new

sequence sets will be generated randomly in next period. In

shift invariant routing, we allocate the shift invariant

sequences for L = 27, K = 3 and P = 3, as shown in figure 2, to

users instead of random sequences in previous case to do

routing.

Figure 4 shows the comparison result. The triangle line is

probabilistic routing and the performance is the worst. The

system is even not robust as
sT goes to 1 and the average

response time tends to infinity. Diamond line represents the

performance of random sequence routing. We can see its

average response time is larger than that of shift invariant

sequences routing, which is denoted by star line.

In practice, users usually divide one piece of job into

several parts and distribute them to servers and the total

waiting time is determined by the part that returns latest. To

simulate this, in previous system we further compare the

maximum respond time for jobs sent in one time slot from one

Fig.3 sequences allocated to users (L = 30, K = 3, P = 3)

L = 27, K = 3, P = 3

Fig.4 comparison of average response time

1642

user. Figure 5 shows that the shift invariant sequences routing

performs much better than others in this case.

V. CONCLUSIONS

In this paper, we present a model of distributed load

balancing problem, which can be applied to many applications

including frequency channel allocation in wireless sensor

networks. We define an optimization problem in order to

minimize the maximal response time for all combinations of

time differences among the users. Under suitable technical

conditions, we derive optimal solutions to the problem, which

are based on shift invariant protocol sequences. Numerical

results show that our algorithm performs better than other

strategies such as probabilistic routing and random sequences.

However, there are some limitations on the number of users.

Further investigations are required to deal with cases having

arbitrary number of users in the system.

REFERENCES

[1] Y. C. Chow, and W. H. Kohler, “Models for Dynamic Load Balancing
in a Heterogeneous Multiple Processor System,” Transactions on
Computers, 28(5), (May 1979).

[2] W. S. Wong, “New Protocol Sequences for Random Access Channels
without Feedback,” IEEE Transactions on Information Theory, 53(6),
(June 2007), pp. 2060-2070.

[3] K. W. Shum, C. S. Chen, C. W. Sung, and W. S. Wong, “Shift-Invariant
Protocol Sequences for Collision Channels without Feedback,” IEEE
Transactions on Information Theory, vol 55(7), pp. 3312-3322 , (July
2009).

[4] L.M. Ni and K. Hwang, “Adaptive Load Balancing in a Multiple
Processor System with Many Job Classes,” IEEE Trans. Software Eng.,
vol. 11, no. 5, pp. 491-496, May 1985.

[5] Shubham Gupta, “Transient Analysis of D(t)/M(t)/1 Queuing System
with Applications to Computing Airport Delays”, Master Thesis of
Massachusetts Institute of Technology, June 2010.

[6] A. Barak and A. Shiloh, “A Distributed Load-balancing Policy for a
Multicomputer,” Software-practice and Experience, VOL. 15(9), 901-
913 (September 1985).

[7] P. Krueger and R. A. Finkel, ‘An adaptive load balancing algorithm for
a multicomputer’, Computer Science Department, University of
Wisconsin, Madison, Wisconsin, 1983.

APPENDIX A

Considering one particular server, I use ()Q t to represent

the queue length at time t and ()A t to represent number of

jobs arrive at time t.

Define ()D t as the number of jobs served at time t. (At time

t, new jobs come first, then get served immediately. ()Q t is

computed after that.)

() (1) () ();Q t Q t A t D t    (14)

1 (1) () 0
() .

0 (1) () 0

Q t A t
D t

Q t A t

  
 

  
 (15)

from (13),
1 1

() () () (0)
P P

t t

Q P A t D t Q
 

   

1

()
P

t

A t K


 , if (0) 0Q  and ()Q K b , then

1

()
P

t

D t K b


  . As ()D t is either 1 or 0, ()P K b  of

()D t are 0s and others are 1s.

Let 1 2 ()() () ... () 0P K bD t D t D t     

(1 2 ()... P K bt t t    ), we can divide the scenario into several

parts.

from (14),
1 1 1() 0 (1) () 0D t Q t A t    

1 11 1

1

1 1

(1) () () (0) 0
t t

t t

Q t A t D t Q
 

 

      and

1 1() () 0Q t A t 

1 1

1

1

() 1
t

t

D t t




  because only

1 2 ()() () ... () 0P K bD t D t D t     

similarly,

2 2 2() 0 (1) () 0D t Q t A t    

2 2

1 1

1 1

2 1

1 1

(1) () () () 0
t t

t t t t

Q t A t D t Q t
 

   

      and

2 2() () 0Q t A t 

2

1

1

2 1

1

() 1
t

t t

D t t t


 

   because only

1 2 ()() () ... () 0P K bD t D t D t     

Now, I change the original condition (0) 0Q  to

'(0)Q b and consider the same points as before.

1 11 1

1

1 1

'(1) () () '(0)
t t

t t

Q t A t D t Q b
 

 

      ,
1'() 1D t  and

1'() 1Q t b 

(because ()A t does not change,
1 1

1

()
t

t

D t




 cannot be larger.)

similarly,

L = 27, K = 3, P = 3

Fig.5 comparison of maximal response time in one time slot

1643

2 2

1 1

1 1

2 1

1 1

'(1) () () '() 1
t t

t t t t

Q t A t D t Q t b
 

   

       ,
2'() 1D t  and

2'() 2Q t b 

……

As P K , ()b P K b   ,

1 1

1 1

1

1 1

'(1) () () '() 1
b b

b b

t t

b b

t t t t

Q t A t D t Q t
 

 



   

      , '() 1bD t  and

'() 0bQ t 

1 2 ()'() '() ... '() 0b b P K bQ t Q t Q t      

exactly b time points when () 0D t  become '() 1D t  for

()P K bt t   and
1

'()
P

t

D t K




therefore,

1 1

'() () () '() '(0) (0)

0

K K

t t

Q K Q K D t D t Q Q

b b

 

    

   

 

'() ()Q K Q K b 

APPENDIX B

We can compute the average waiting time
1 2(, ,...,)w KT   

from another direction. We define l

i as the time slot at which

server l receives a job from user i in one period P, which

means

() 1l
i

is l


 , 1,2,...,l

i P 

The jobs sent to server l in one period can be represented

by the sequence
1 2(, ,......,)l l l

K   and ()tA l can be computed

by counting the number of t s that appear in
1 2(, ,......,)l l l

K   .

()tQ l can further be computed from ()tA l by (8). Therefore,

the total waiting time for jobs on server l is a function of l

i .

1 2 1 2(, , ,...,) (, ,......,)l l l

w K KT l g     

 (16)

1 2(, ,...,)w KT    can be further computed by

1 2

1 2

(, , ,...,)

(, ,...,)
w K

l

w K

T l

T
L K

  

   




 (17)

Therefore,

1 2 1 2

1 2

1 2

1 2

, ,..., , ,...,

1 2

, ,...,

(, , ,...,)

(, ,...,)

(, ,......,)

K K

K

w K

l

w K

l l l

K

l

T l

T
L K

g

L K

     

  

  

  

  








 

 

For example, if

1 {(1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......}S  and

2 {(0,1,0,0,1,0),(0,0,1,0,0,1),(1,0,0,1,0,0),......}S  , when

1 0  and 2 0  , server 1 will receive one job from user 1 at

the first time slot and one job from user 2 at the third time slot,

thus
1

1 1  and
1

2 3  .

As user i will send exactly 1 job to server l in one

period P, we can always find a i  where user i sends the

job to server l at the first time slot, which means 1l

i  .

Then if 1i   , 2l

i  . In this way, as the domain size of

i and
l

i are both P, we can always find exactly one i

correspond to one value of
l

i . Therefore i and
l

i are one

to one mapping. Thus, summing up i from 1 to P is the same

as summing up
l

i from 1 to P. Meanwhile, time differences

for different users are independent and
l

i is only affected by

i , we have

1 2

1 2

1 2

1 2

, ,...,

1 2

1 2

(, ,......,)

... (, ,......,)

... (, ,......,)

K

K

l l l
K

l l l

K

l

l l l

K

l

l l l

K

l

g

L K

g

L K

g

L K

  

  

  

  

  

  









 

 

 

Which is the same no matter what sequences are used.

For example, if

1 {(1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......}S  and

2 {(0,1,0,0,1,0),(0,0,1,0,0,1),(1,0,0,1,0,0),......}S  , when we

fix 2 and only consider server 1, we can find that
1

1 1 

when 1 0  ,
1

1 2  when 1 2  and
1

1 3  when 1 1  .

Therefore, when summing up all possibilities for 1 , it is the

same as summing up all possible values for
1

1 . Similarly, all

values of
1

2 are included once when summing up 2 . Patterns

on other servers can also be computed in this way and thus

1 2 1 2 1 2

2 2 6 3 3

1 2 1 2 1 2

, 0 0 1 1 1

(,) (,) (,)
l l

l l

w w

l

T T g
     

     
    

   

6

1

[(1,1) (1,2) (1,3) (2,1) (2,2)

(2,3) (3,1) (3,2) (3,3)]

l

g g g g g

g g g g



    

   


 (18)

When we change sequences to

1 {(0,1,0,0,0,0),(0,0,1,0,0,1),(1,0,0,1,0,0),......}S  and

2 {(1,0,1,0,0,0),(0,1,0,1,0,0),(0,0,0,0,1,1),......},S  we can

find that the relationship changes to
1

1 1  when 1 2  ,
1

1 2  when 1 1  and
1

1 3  when 1 0  . However, when

we sum 1 and 2 up, we still get the same expression as (18)

and the result is irrelevant to what sequences used. Therefore,

1 2

1 2

, ,...,

(, ,...,)
K

w KT C
  

    where C is a constant for any

sequences 1 2, ,..., KS S S .

1644

