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Abstract—Ideally, many application systems for distributed users 

should be designed without requiring a centralized controller, for 

example cloud computing or wireless sensor networks.  A 

fundamental challenge to developing distributed algorithms for 

these systems is load balancing, which is the focus of study in this 

paper.  A common feature of these distributed algorithms is that 

routing decisions should be derivable without requiring much 

information from the system, probabilistic routing is one example 

coming to mind. In this paper, we propose a new routing strategy 

based on the idea of shift-invariant protocol sequences.  We study 

this load balancing approach in the context of a queuing model of 

multi-server system. Our model and strategy can be applied to 

many practical systems, including wireless networks. Numerical 

studies were carried out to compare our strategy with other 

routing strategies such as probabilistic routing and random 

sequences routing. The results show that the proposed algorithm 

has better performance than these strategies. 

Keywords—Wireless sensor network; Multiple server system; 

Distributed load balancing; Shift- Invariant Protocol Sequences 

I.  INTRODUCTION 

Load balancing problem has been studied in many previous 

works. Chow and Kohler [1] present a queuing model for a 

heterogeneous multiple server system. In the model, an 

arriving job is routed by a job dispatcher to one of parallel 

servers. Different routing strategies are also studied in [1], 

classified into two categories: deterministic and 

nondeterministic. In deterministic strategies, an incoming job 

is sent to a particular server to minimize or maximize the 

expected performance of a related criterion function, such as 

minimizing response time, minimizing system time or 

maximizing throughput. In nondeterministic strategies, an 

arriving job is sent to a server with certain probability, where 

the routing decision is usually based on independent 

probability distinctions. Performance of these strategies are 

analyzed and compared in [1]. 

 Chow and Kohler [1] show that deterministic strategies 

have better performance than nondeterministic strategies. 

However, in deterministic strategies, there must be a central 

controller to optimize their criterion function and the 

computational complexity is usually high, especially in 

systems with large number of servers. On the contrary, in 

nondeterministic strategies, the packets are routed based on a 

probabilistic routing matrix, which can be distributed to users 

who are sending jobs to the multiple server system and no 

central controller is needed. In this paper, we are focus on the 

latter class of problems, which can be defined as “distributed 

load balancing”.  

Ni and Hwang [4] propose a recursive probabilistic routing 

algorithm. It uses parameters of the system such as job 

incoming rate and service rate to adjust probabilistic routing 

matrix recursively to finally obtain an optimal matrix.  Some 

other previous work such as [6] and [7] are focused on how to 

exchange information among users and servers to distribute 

jobs evenly to all servers. It can be viewed as a trade-off 

between performance and information.  

In this paper, a model is presented to study the distributed 

load balancing problem. There are three basic assumptions: (1) 

users independently distribute their tasks to servers according 

to pre-assigned binary sequences, which will be explained in 

following section; (2) no real-time synchronization is required; 

(3) there is no centralized controller after the initial sequences 

assignment. These assumptions usually hold in wireless 

networks without a centralized controller or base station and 

do not provide guarantee that users are synchronized. Based 

on these assumptions, a new strategy is proposed.  It can be 

shown that the performance of the proposed strategy is better 

than probabilistic routing. 

The strategy has many applications in practical systems. For 

example, in some wireless sensor network, users transfer data 

through different frequencies. As long as several users are 

transmitting on the same frequency, packet collision may 

occur and additional techniques such as slotted aloha should 

be used to resolve the contention and the effective transmitting 

time will increase. The different frequencies can be viewed as 

different “servers” and the extra transmitting time when 

frequency collision occurs can be estimated by queuing model. 

Thus, the frequency allocation in a wireless sensor network 

can be analyzed in the context of load distribution in our 

multi-server model, and our strategy can help distribute 

different frequencies to users evenly in order to reduce the 

transmission time.  

Section II presents the model of distributed load balancing 

problems and defines the optimization function to make the 
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system performance robust. Section III introduces the shift 

invariant protocol sequences studied in [2] and [3], and applies 

them in the distributed load balancing problems. Section IV 

shows the numerical results and the comparison among 

different strategies. Section V concludes the paper. 

II. SYSTEM MODEL 

As shown in figure 1, there are L servers in the multiple 

server system and K users are sending jobs to the system. We 

assume that each user sends the same number of jobs to 

servers each time slot and we use N to denote it. The pattern 

for one user at one time slot can be represented by a binary 

sequence, where the positions of 1s denote the servers selected 

to send jobs to by this user. For example, if there are 6 servers, 

user i sends 2 jobs at time slot t to server 1 and 2, we can use 

the sequence (1,1,0,0,0,0)i

ts   to represent the case.  

 
 

In order to distribute the jobs evenly, each user is required 

to send jobs to different servers in different time slots, until all 

servers are used once. Therefore, each user will follow a series 

of sequences to send jobs and the positions of 1s in these 

sequences should not overlap with each other. After using all 

servers once, the user will go back to follow the same pattern 

of sequences and thus the series is periodical. We define the 

period as /P L N and to simplify the model, we assume L  

is divisible by N . We define this series of sequences as 
iS  for 

user i  

1 2 1 2{ , ,..., , , ,..., ,...}.i i i i i i

i P pS s s s s s s               (1) 

For example, suppose there are 6 servers and 2 users and each 

user sends 2 jobs every time slot. User 1 selects server 1 and 2 

at the first time slot, server 3 and 4 at the second time slot and 

server 5 and 6 at the third time slot. This scenario can be 

represented as 

1 {(1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......}S  . Similarly, 

user 2 may follow  

2 {(1,0,0,1,0,0),(0,1,0,0,1,0),(0,0,1,0,0,1),......}S  . 

As there is no communication among different users, 

jobs from different users may arrive at the same server in one 

time slot. If more than one jobs are sent to the same server in a 

time slot, we assume the queuing order for these jobs are 

determined randomly. In our model, we only consider the 

simplest case where one server will serve exactly one job per 

time slot. Under this assumption, a stationary condition is that 

K N L   and /P L N K  . 

Moreover, as the users are independent, the time to start 

sending jobs are not synchronized and thus we need to 

introduce a time difference for each user when the whole 

system starts. We define the rotation 
iRS of 

iS  by 

2 3 1 2 3{ , ,..., , , , ,......}.i i i i i i

i PRS s s s s s s               (2) 

Then we introduce the concept of a time difference 

[0, 1]i P    for user i  so that when the system starts, user 

i follows 
i  rotations of 

iS  

1 2 1 2{ , ,..., , , ,......}.i

i i

i i i i i

i PR S s s s s s


                (3) 

In the previous example, if 
1 0   and 

2 0  , two users will 

just follow the sequences in 
1S  and 

2S . However, if 
1 0   

and 
2 2  , the sequences for user 2 will 

become {(0,0,1,0,0,1),(1,0,0,1,0,0),(0,1,0,0,1,0),......}  

because user 2 already goes to the third sequence in 
2S  when 

the system starts. Therefore, different combinations of 

1 2( , ,..., )K     result in different queuing patterns for 

servers. 

For a particular combination of  , we can determine the 

queuing pattern for all servers by the following notations. We 

use ( )i

ts l  to represent the value of position l  in i

ts . It is just 

the number of job user i  send to server l at time t  (either 1 or 

0). Note that ( )i

ts l is dependent of  , and we use ( )i

ts l  instead 

of 
1 2( , , ,..., )i

t Ks l     here for short from; notations of ( )tA l  

and ( )tQ l  which are defined later should be interpreted 

similarly. As one user only sends one job to a particular server 

in one period, we have 

1 1( ) ( ) ... ( ) 1.i i i

t t t Ps l s l s l                    (4) 

One user sends N jobs each time slot in total to all servers in 

one period, so 

( ) .i

t

l

s l N                 (5) 

We further use ( )tA l  to denote the number of jobs server 

l  receives from all users at time t, thus ( )tA l  can be 

computed directly from ( )t

is l . 

( ) ( ).t

t i

i

A l s l                 (6) 

Similarly, we have 

1 1( ) ( ) ... ( ) ;t t t PA l A l A l K                    (7) 

( ) .t

l

A l N K                  (8) 

As ( )i

ts l  is periodical,  

( ) ( ).t t PA l A l                 (9) 

 
Fig.1  Illustration of multi-server system model 
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( )tQ l  is defined as the number of jobs queuing in server l 

at time t, it can be expressed by the following formula, 

provided that we let new jobs come and get served 

immediately, then compute ( )tQ l by 

1( ) ( ( )+ ( ) 1) .t t tQ l Q l A l 

               (10) 

( )tQ l  is also periodical except for the first P time slots. The 

proof of this is given in Appendix A. That is, 

( ) ( ).t t PQ l Q l  when t P             (11) 

Finally, we can define an average waiting time for a 

random job by  
2

1 2

1

1 2

( , , ,..., )

( , ,..., ) .

P

t K

l t P

w K

Q l

T
P N K

  

    
 

 
           (12) 

As ( )tQ l  is computed under one particular combination of 

shifts as defined by  , 1 2( , ,..., )w KT     can be represented as a 

function of  . 

We can use 
1 2( , ,..., )w KT     to evaluate the performance 

of the whole system and a desirable goal is to 

minimize
1 2( , ,..., )w KT    . Obviously, 

1 2( , ,..., )w KT    can 

assume different values for different combinations of  , for a 

fixed set of sequences allocated to users. Moreover, we cannot 

predict the time differences   for all users in practice. 

Therefore, we try to find a set of sequences to minimize the 

possible maximum value of 
1 2( , ,..., )w KT     among all 

combinations of time differences  . That is, our goal is to 

determine the 

1 2

1 2
, ,...,

arg min(max( ( , ,..., ))).
K

w K
S S S

T


               (13) 

For example, suppose 

1 {(1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......}S   and 

2 {(0,0,1,1,0,0),(0,0,0,0,1,1),(1,1,0,0,0,0),......}S  , when 

1 0   and 
2 0  , no jobs will go to the same server at any 

time slot and thus the waiting time (1,1) 0wT  . However, 

when 
1 2   and 

2 4  , the sequences that two users follow 

are exactly the same and the waiting time becomes much 

worse (1,3) 0.5wT  . To determine the optimal strategy, we 

only need to consider the worst case for each sequence set. For 

example, in this example, the worst case over all shifts is  

(1,3) 0.5wT   and this set of 
1S  and 

2S  is not the optimum. 

To find the solution for the optimization problem (13), 

we rely on the following theorem: 

Theorem:
1 2

1 2

, ,...,

( , ,..., )
K

w KT C
  

    where C is a 

constant for any sequences 1 2, ,..., KS S S . 

The proof is in Appendix B.  

Based on this theorem, as the sum of 
1 2( , ,..., )w KT     is 

constant, a shift invariant sequence set that yields the same 
value for all  , if it exists, is optimal. In the next section, we 

will show that such solution exists for some system parameters. 

III. SHIFT INVARIANT PROTOCOL SEQUENCES 

Protocol sequences are first proposed in [2] to be applied 

in collision channel without feedback in wireless 

communication. Users are arranged to send packets based on 

the binary sequences allocated to them. If there are more than 

one packet sent to a receiver simultaneously, collision occurs 

and these packets are dropped. For users that cannot be 

synchronized, the set of sequences should ensure that no 

matter how the sequences are shifted, the number of collisions, 

defined as “cross correlation” of the sequences, should be the 

same. This kind of protocol sequence is called shift invariant 

protocol sequences (SIS). 

The conditions of the collision channel is quite similar to 

the distributed load balancing model, so we try to apply the 

protocol sequences to solve the optimization problem in our 

model.  

As the cross correlation of shift invariant protocol 

sequences are the same among different shifts, and the 

response time is related to the cross correlation, we find that 

shift invariant protocol sequence is one of the sequence sets 

that can make the response time equal among all shift patterns. 

In other words, shift invariant protocol sequence is one of the 

optimal solutions to (13).  

Figure 2 shows one set of shift invariant protocol 

sequences and the resulting routing patterns for different users. 

Table I shows the response time for all  s, which is constant. 

We further studied the case when all users use the sequences 

for user 3 in previous case. Although the respond times for 

some  s are smaller than that of shift invariant sequences, the 

maximum one is much larger. Therefore, shift invariant 

sequences set is one of the optimal solutions to (13) and thus 

has a robust performance. 

  

2 

Figure 3 

Figure 3 

Fig.2 example of shift invariant protocol sequence 
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TABLE I.  AVERAGE RESPOND TIME FOR DIFFERENT   

 

However, the existence of shift invariant protocol 

sequences depends on the value of server number L and 

period P . For P users, the minimum value of L  is PP .  

When the number of servers does not satisfy the 

requirements of shift invariant sequences, we propose a simple 

way to generate a suboptimal sequence set. Note that if there 

are two sequence sets 
1S and 

2S with same user number K and 

period P , suppose their server numbers are 
1L and

2L , we can 

append 
2S at the end of 

1S  and let them shift in their own 

range with period P . In this way, we construct a new 

sequence set for 
1 2L L  servers with the same user number 

K  and period P .  

Therefore, if there is a shift invariant sequence set 
LS for 

server number L , we can generate optimal sequence set for 

n L  (where n is an integer) by adding n 
LS  together. Based 

on it, for any server number PL P , we can firstly find the 

shift invariant sequence set 
PS for PP  servers, and then define 

a minimal shift invariant sequence set for L  by adding 
Ln  

PS  

together where 
Ln  is the maximal integer that satisfies 

P

Ln P L  . For the remaining part, we currently append a 

sequence set with same sequences for all users.  

Figure 3 shows an example. For L = 30, K = 3 and P = 3, 
we find the shift invariant sequence set for L = 27 and append 
the same sequences for L = 3 at the end of sequences allocated 
to each user. 

 

IV. NUMERICAL RESULTS 

The settings of our simulation are the same as mentioned 

in section II. There are 27 servers and 3 users in the system 

and each user sends 9 jobs to different servers every time slot. 

We further introduce a parameter 
sT to denote how long a 

single job needs to be served. It is assumed to be one time slot 

in previous part and it can vary from 1 to 1/3 in our 

simulations. (Jobs will not cumulate if 
sT is less than 1/3, 

because even if a server receives 3 jobs in one time slot, it can 

serve them all in that time slot). We compute average response 

time for one job defined by (12). Three routing strategies are 

compared in our simulation: probabilistic routing, random 

sequence routing and shift invariant sequence routing.  

In probabilistic routing, each user selects 9 different 

servers out of 27 with equal probabilities among all servers in 

each time slot to send jobs. Users behave independently 

among different time slots and their routing strategies are not 

affected by previous selections. In random sequence routing, 

sequence sets defined by (1) are generated randomly and 

allocated to users at the beginning. Users send jobs following 

the sequence sets in one period P = 3 time slots. Then new 

sequence sets will be generated randomly in next period.  In 

shift invariant routing, we allocate the shift invariant 

sequences for L = 27, K = 3 and P = 3, as shown in figure 2, to 

users instead of random sequences in previous case to do 

routing.  

Figure 4 shows the comparison result. The triangle line is 

probabilistic routing and the performance is the worst. The 

system is even not robust as 
sT  goes to 1 and the average 

response time tends to infinity. Diamond line represents the 

performance of random sequence routing. We can see its 

average response time is larger than that of shift invariant 

sequences routing, which is denoted by star line.  

 

In practice, users usually divide one piece of job into 

several parts and distribute them to servers and the total 

waiting time is determined by the part that returns latest. To 

simulate this, in previous system we further compare the 

maximum respond time for jobs sent in one time slot from one 

 

 

 

Fig.3 sequences allocated to users (L = 30, K = 3, P = 3) 

L = 27, K = 3, P = 3 

Fig.4 comparison of average response time  
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user. Figure 5 shows that the shift invariant sequences routing 

performs much better than others in this case. 

 

V. CONCLUSIONS 

In this paper, we present a model of distributed load 

balancing problem, which can be applied to many applications 

including frequency channel allocation in wireless sensor 

networks.  We define an optimization problem in order to 

minimize the maximal response time for all combinations of 

time differences among the users. Under suitable technical 

conditions, we derive optimal solutions to the problem, which 

are based on shift invariant protocol sequences.  Numerical 

results show that our algorithm performs better than other 

strategies such as probabilistic routing and random sequences. 

However, there are some limitations on the number of users. 

Further investigations are required to deal with cases having 

arbitrary number of users in the system. 
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APPENDIX A 

Considering one particular server, I use ( )Q t  to represent 

the queue length at time t and ( )A t  to represent number of 

jobs arrive at time t. 

Define ( )D t  as the number of jobs served at time t. (At time 

t, new jobs come first, then get served immediately. ( )Q t  is 

computed after that.) 

( ) ( 1) ( ) ( );Q t Q t A t D t                (14) 

1 ( 1) ( ) 0
( ) .

0 ( 1) ( ) 0

Q t A t
D t

Q t A t

  
 

  
            (15) 

from (13), 
1 1

( ) ( ) ( ) (0)
P P

t t

Q P A t D t Q
 

     

1

( )
P

t

A t K


 , if (0) 0Q   and ( )Q K b , then 

1

( )
P

t

D t K b


  . As ( )D t  is either 1 or 0, ( )P K b   of 

( )D t  are 0s and others are 1s.  

Let 1 2 ( )( ) ( ) ... ( ) 0P K bD t D t D t     
 

( 1 2 ( )... P K bt t t     ), we can divide the scenario into several 

parts.  

from (14), 
1 1 1( ) 0 ( 1) ( ) 0D t Q t A t      

1 11 1

1

1 1

( 1) ( ) ( ) (0) 0
t t

t t

Q t A t D t Q
 

 

       and 

1 1( ) ( ) 0Q t A t   

1 1

1

1

( ) 1
t

t

D t t




   because only  

1 2 ( )( ) ( ) ... ( ) 0P K bD t D t D t       

similarly,  

2 2 2( ) 0 ( 1) ( ) 0D t Q t A t      

2 2

1 1

1 1

2 1

1 1

( 1) ( ) ( ) ( ) 0
t t

t t t t

Q t A t D t Q t
 

   

      and  

2 2( ) ( ) 0Q t A t   

2

1

1

2 1

1

( ) 1
t

t t

D t t t


 

    because only  

1 2 ( )( ) ( ) ... ( ) 0P K bD t D t D t       

Now, I change the original condition (0) 0Q   to 

'(0)Q b  and consider the same points as before. 

1 11 1

1

1 1

'( 1) ( ) ( ) '(0)
t t

t t

Q t A t D t Q b
 

 

      , 
1'( ) 1D t   and 

1'( ) 1Q t b   

(because ( )A t  does not change, 
1 1

1

( )
t

t

D t




 cannot be larger.) 

similarly,  

 

L = 27, K = 3, P = 3 

Fig.5 comparison of maximal response time in one time slot 

1643



2 2

1 1

1 1

2 1

1 1

'( 1) ( ) ( ) '( ) 1
t t

t t t t

Q t A t D t Q t b
 

   

       , 
2'( ) 1D t   and 

2'( ) 2Q t b   

…… 

As P K , ( )b P K b   ,  

1 1

1 1

1

1 1

'( 1) ( ) ( ) '( ) 1
b b

b b

t t

b b

t t t t

Q t A t D t Q t
 

 



   

      , '( ) 1bD t   and 

'( ) 0bQ t 
 

1 2 ( )'( ) '( ) ... '( ) 0b b P K bQ t Q t Q t        

exactly b time points when ( ) 0D t   become '( ) 1D t    for 

( )P K bt t    and 
1

'( )
P

t

D t K


  

therefore,  

1 1

'( ) ( ) ( ) '( ) '(0) (0)

0

K K

t t

Q K Q K D t D t Q Q

b b

 

    

   

   

'( ) ( )Q K Q K b 
 

APPENDIX B 

We can compute the average waiting time 
1 2( , ,..., )w KT     

from another direction. We define l

i  as the time slot at which 

server l  receives a job from user i  in one period P, which 

means 

( ) 1l
i

is l


 , 1,2,...,l

i P   

The jobs sent to server l  in one period can be represented 

by the sequence 
1 2( , ,......, )l l l

K    and ( )tA l  can be computed 

by counting the number of t s that appear in 
1 2( , ,......, )l l l

K   . 

( )tQ l  can further be computed from ( )tA l  by (8). Therefore, 

the total waiting time for jobs on server l  is a function of l

i . 
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Therefore, 

1 2 1 2

1 2

1 2

1 2

, ,..., , ,...,

1 2

, ,...,

( , , ,..., )

( , ,..., )

( , ,......, )

K K

K

w K

l

w K

l l l

K

l

T l

T
L K

g

L K

     

  

  

  

  








 

 

 

For example, if  

1 {(1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......}S   and 

2 {(0,1,0,0,1,0),(0,0,1,0,0,1),(1,0,0,1,0,0),......}S  , when 

1 0   and 2 0  , server 1 will receive one job from user 1 at 

the first time slot and one job from user 2 at the third time slot, 

thus 
1

1 1   and 
1

2 3  .  

As user i  will send exactly 1 job to server l  in one 

period P, we can always find a i   where user i  sends the 

job to server l  at the first time slot, which means 1l

i  . 

Then if 1i   , 2l

i  . In this way, as the domain size of 

i  and 
l

i  are both P, we can always find exactly one i  

correspond to one value of 
l

i . Therefore i  and 
l

i  are one 

to one mapping. Thus, summing up i  from 1 to P is the same 

as summing up 
l

i  from 1 to P. Meanwhile, time differences 

for different users are independent and  
l

i  is only affected by 

i , we have 
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Which is the same no matter what sequences are used. 

For example, if  

1 {(1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......}S   and 

2 {(0,1,0,0,1,0),(0,0,1,0,0,1),(1,0,0,1,0,0),......}S  , when we 

fix 2  and only consider server 1, we can find that 
1

1 1   

when 1 0  , 
1

1 2   when 1 2   and 
1

1 3   when 1 1  . 

Therefore, when summing up all possibilities for 1 , it is the 

same as summing up all possible values for 
1

1 . Similarly, all 

values of 
1

2  are included once when summing up 2 . Patterns 

on other servers can also be computed in this way and thus  
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          (18) 

When we change sequences to 

1 {(0,1,0,0,0,0),(0,0,1,0,0,1),(1,0,0,1,0,0),......}S   and 

2 {(1,0,1,0,0,0),(0,1,0,1,0,0),(0,0,0,0,1,1),......},S  we can 

find that the relationship changes to 
1

1 1   when 1 2  , 
1

1 2   when 1 1   and 
1

1 3   when 1 0  . However, when 

we sum 1  and 2  up, we still get the same expression as (18) 

and the result is irrelevant to what sequences used. Therefore, 
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sequences 1 2, ,..., KS S S . 
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