Power Control for non-Gaussian Interference

Yi Chen and Wing Shing Wong
Department of Information Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: {cy007, wswong} @ie.cuhk.edu.hk

Abstract—This paper investigates the power control problem
involving a small number of active users whereby the standard
Gaussian interference noise assumption does not hold. The model
also allows for different user transmission rates. We analyze the
situation under which the system can be asymptotically error-
free. Subsequently, we formulate a power control optimization
problem and propose an Iterative Descent Algorithm for solution.
We prove that under suitable conditions, the power control
optimization problem has a unique solution which is achieved
by the proposed algorithm. Simulations are carried out and
compared with the power control results under the classical
Gaussian assumption.

1. INTRODUCTION

In the literature of the power control problem in wireless
communication systems (see for example the references in
[1]-[3]), mutual user interference is typically modeled as a
Gaussian process so that for any given user, the combined
interference from the other users is treated as an additive
Gaussian noise having a uniform power spectral density over
the frequency band of interest. This Gaussian model can
be partially justified by the Central Limit Theorem if the
interference comes from mutually independent, identically
distributed user signal processes and if the number of such
users is large. However, in practice the number of interfering
users may be small or they may not be independent identically
distributed. The Gaussian model is not accurate enough when
the Central Limit Theorem is not applicable [4].

This observation highlights the need for the study of a
system model where the interference is non-Gaussian. We
derive an exact expression for the average bit error probability
(BEP) for such a system. A related power control optimization
problem based on this new model is considered. A major
finding of our work is that the non-Gaussian model has a
significantly different performance characteristics from the
traditional classical model. This is reflected in two major
aspects. The first concerns the feasible BEP region. Under
the Gaussian model, the BEP is a monotonically decreasing
function of the signal-to-interference-plus-noise power ratio
(SINR), and it is a well-known result of power balancing
that the maximum of the minimal SINR is related to the
dominant eigenvalue of the channel gain matrix and therefore
is bounded. Hence, it is not possible to make the BEP’s
arbitrarily small uniformly. While for the non-Gaussian model,
it is possible that the BEP’s of all users go simultaneously
to zero under certain technical condition which is explicitly
characterized here.

The second performance ditference shows up when the users
have different transmission bit rates. In the Gaussian model,
the SINR is defined to be the power of the message signal
divided by the sum of the powers of interfering users plus the
thermal noise. Consider the example where the thermal noise
are negligible. For a given power setting, one can obtain a
corresponding SINR vector. If we change the bit rate of one
of the users but keep its power level fixed, then it follows
from the defining formula that the SINR’s of other users will
not change and so will their BEP’s. Simulation results for the
non-Gaussian model however show otherwise. That is, varying
transmission bit rate does change the BEP performance of a
system. On the other hand, in practice, when an interfering
user transmits at a bit rate larger than that of the intended
user, its signal is spread over a larger bandwidth. Hence, part
of its power will fall out of the bandwidth of the receiver
of interest and thus be filtered. However, in the Gaussian
model, the whole power of the interfering user is taken into
account, which ignores the bandwidth effect. This issue is
considered in the non-Gaussian model. One goal of this paper
is to investigate the effect of multirate on system performance.

The power control problem presented in this paper is the
basic optimization problem that aims to minimize the total
power of all users subject to the BEP’s satisfying given
bounds. We prove that when the channel gains satisfy certain
conditions, there is a unique optimal solution. An algorithm,
entitled the Iterative Descent Algorithm, is proposed and is
shown to be convergent to the optimal solution.

The rest of the paper is organized as follows. The system
model and the error probability calculation are presented in
Section II. Section III describes the power control problem.
Analysis of the optimal solution is also presented. Simulation
results are provided in Section IV. We compare the results
between the Gaussian model and the non-Gaussian model.
Finally, in Section V, we give some concluding remarks.

II. SYSTEM MODEL AND ERROR PROBABILITY
CALCULATION

A. System Model

Consider a wireless communication system with n trans-
mitters {tran;,i = 1,---,n} and n receivers {rec;,i =
1,---,n}, in which, tran; communicates to rec; and all
the transmissions share the same wireless radio spectrum.
We refer user i to be the pair (tran;,rec;). Let x2 be the
transmitted power of tran; where x; > 0 is the amplitude of
the transmitted signal. Let R; be the transmission bit rate of



tran;. Assume slow and flat fading. Let gfj be the channel
gain between tran; and rec; where g;; > 0 is the attenuation
factor on x;. We consider a snapshot of the system, and thus
gi; is treated as a constant. Its magnitude reflects the effect of
path loss, shadow fading and antenna gains.

All transmitters apply binary phase-shift keying (BPSK)
modulation. Let pr, be the unit-amplitude rectangular pulse
of duration T; = 1/R; and {bf}32, be the information
sequence of tran;, where b¥ is uniformly distributed on {-1}.
Assume there is no frequency offset and phase offset in all the
transmitters and receivers. Thus the carrier is suppressed for
notational economy. The baseband signal s;(t) of tran; is

where -
ai(t) = bEpr,(t — kT)). )
k=0

The transmitted signals from all the transmitters are not
necessarily synchronized. At rec;, the received baseband signal
T (t) is

Ti(t) = Z GijZia5 (t - Tij) + ni(t), (3)
7=1

where 7;; is the time delay of s;(¢) at rec;, and n,(t) is the
additive white Gaussian noise (AWGN) with two-sided power
spectral density Ng/2.

A receiver demodulates the received baseband signal using a
matched filter, followed by a threshold decision. The impulse
response V() of the filter of rec; is a rectangular pulse of
amplitude 1 and duration T;. Without loss of generality, we
assume 7;; = 0, i.e., the matched filter of rec; is synchronized
to the arrival signal transmitted by tran;, and assume Ty
(j # 1) is uniformly distributed in [0, T}]. For the analysis,
we consider a bit interval as [0, 7;] for convenience. Assume
b; = 1, the input to the decision device for rec; is

T;
yi = / r(OR(dt = W + S Wiy + 20 (&)
0

J#i
where
T;
Wij = gijacj / a]-(t e Tij)dt, (5)
0
T
Zi= / ns(£)s2(t)dt. ©
0

Since 7;; = 0, W;; = T3g4;. Unlike classical models, the
interference term > j£: Wiz 1s not assumed to be a Gaussian
random variable. For all j # 4, W;; is a random variable
depends on 7;;, T; and the information bits of tran;. Several
typical cases of the integral fOT *a;{t —7;;)dt are illustrated in
Fig. 1.

For the threshold decision, an error occurs if y; < 0 when
b; = 1, or if y; > 0 when b; = —1. Since b; takes +1 with
equal probability, the average BEP is equal to the probability
of having y; < 0 when b; = 1. Since Z; is a Gaussian random

variable with zero mean and variance NyT; /2, the BEP of user
i conditioned on ., W;; is

> Wi

NoT; ’
2

where Q(-) is the complementary error function defined as
oo _u?
Qz) = \/%fz e 7 du.
Hence, the average BEP is
A = E[Pr(y: <0 Wy, b = 1), ®)
J#i
where the expectation is over {b; : j # i} and {7;; : j # i}.

Pr{y <0 Wibi=1|=Q )

J#

B. Asymptotically Error-Free System

Let x = (z1,...,%y,). Define a function A : R” -—— R™ with
component functions Aq(x), ..., A,(x), where A; is defined
in (8). Scalar operators, such as “ >, “ > or “ =" are applied
to vectors component-wise. We use “|-|” to denote the absolute
value and “|| - ||” to denote the Euclidean norm.

Definition 1. An n-user wireless communication system is said
to be asymptotically error-free if
inf max \; =0. )
x>0i=1,--,n
Remark: This definition of asymptotically error-free trans-
mission is focused on the decision error at the physical layer. It
is different from the information-theoretic concept of source-
symbol error probability (SEP) in coding theory.
A matrix A = (a;;) is said to be row diagonally dominant
if
[a“-[ > Z \aij[ for all 1.
J#i
A square matrix is called a Z-matrix if all off-diagonal entries
are less than or equal to zero. A Z-matrix A is called an
M-matrix if it satisfies any one of the following equivalent
conditions:

(10)

1) The eigenvalues of A all have positive real parts.

2) Av >0 implies v > 0.

3) There exists a vector v with positive entries such that
Av > 0.

4) The diagonal entries of A are positive and AD is row
diagonally dominant for some positive diagonal matrix
D.

For more discussion of M -matrix, refer to [5].

Definition 2. The character matrix of an n-user wireless
communication system with channel gain matrix G = (g.5)
is an n x n matrix C = (cy;) with ¢ = gy for all i and
Cij = —gij for j # 1.

Obviously, C' is a Z-matrix.

Theorem 1. An n-user wireless communication system is
asymptotically error-free if and only if its character matrix
is an M -matrix.



Proof: Consider an n-user wireless communication sys-
tem with channel gain matrix G = (g,;) and character matrix
C. First fix a receiver 1. We see that for j # 4,

Wi; > —Tigijx;, an
where the equality is obtained when a;(t — 73;) = —1 for
0<t<T;, that is, bf = —1 for k < T;/T; + 1.

Since Q(-) is a decreasing function,
A =E Q| > Wij/vV/NoT/2 (12)
J

< E Q| Ti(guz: — Zgiﬂj)/v NoT;/2 (13)

J#
- Q (5:/2TNs ), (14)

where gl = GiiTq — Z];ﬁl gijilfj.
Let § = [§1,-++ ,8n] - It follows from Definition 2 that

y =Cx.

By the third equivalent definition of M-matrix, if C is an
M -matrix, there exists x™ > 0 such that y* = Cx* > 0. Let
{mx* : m > 0} be a sequence of input power with m — occ.
Then, A; < Q(mg;+/2T;/Ng) — 0 as m — oo for all i. That
is, the system is asymptotically error-free.

On the other hand, if C is not an M -matrix, for any x > 0,
there exists at least one entry in CX, say §;, which is not
positive. Let

P=Pr{bf =—1:j 44, (k—1)T; <T.}  (15)
> 9= Xage; ITe/T5141) (16)
=Pl (17)
Then,
X > PQ (/2T No ) ()
> 1Q(0) (19)
> P,/2. (20)

This means that the system is not asymptotically error-free.
|

Remark: In the Gaussian model, the BEP is a monoton-
ically decreasing function of SINR, and it is a well-known
result of power balancing that the maximum of the minimal
SINR is related to the dominant eigenvalue of the channel gain
matrix and therefore is bounded. Hence, no matter what the
power setting is, the BEP’s under the Gaussian model fail
to approach zero uniformly. However, in the non-Gaussian
model, the asymptotically error-free property can be achieved.

111. POWER CONTROL PROBLEM

In the subsequent discussion, we consider systems with
character matrix C' being an M -matrix.

A. Problem Statement

There are different formulations for the power control
problem. In this paper, our goal is to minimize the total
transmitted power of a system while maintaining an acceptable
quality-of-service (QoS) for each user.

Let € be the target BEP. The power control problem can be

stated as
>
i

s.t. Ai(x) <e

min @2n

1=1,...,n.

In general, the function A;’s are non-convex on {x X > O},
and thus (21) is not a convex optimization problem. However,
note that the Q-function is convex on RT. We can add a
constraint such that the new problem is convex.

Define

X = {x:Cx >0} (22)

Since C is an M-matrix, X is non-empty. Furthermore,
X¢ is an intersection of n halfspaces and hence convex.

Lemma 1. For any user i, over x € X¢, A; is a strictly and
monotonically decreasing function of x, and a strictly and
monotonically increasing function of xy, for k # i.

Proof: See Appendix A. |
Lemma 2. For any user i, \; is convex on Xc.

Proof: Fix a user i. Let ¢;; = gy; fOTi a;(t — 7;;)dt and
q; = [g1,---,%n]. Given q; by (5), Zj Wi = qxis a

linear function of x, and thus the range of Zj Wi over X¢o
is convex. Moreover, for any x € X, we have,

Z Wi; = Ti9im; + Z Wi, (23)
J J#i
> Tigizi — Ti Y 9is%;5 (24)
J#i
> 0. (25)

Since Q(z) is convex on z >0, Q(3_; Wi;/+/NoT;/2) is
convex on X¢. Therefore, by the definition of A; in (8), it is
ready to verify that the expected BEP function A; is convex
on Xc. |

Consequently, the following problem is a convex optimiza-

tion problem,
>
i

s.t. Ai(x) <e
X € Ag.

Let X, = {x: A(x) < ¢4 =1,...,n}. Since C is an
M -matrix, by Theorem 1, A, is non-empty

min

(26)

i=1,...,n

Proposition 1. There exists g such that for € < eg, X, C X,
i.e., (21) and (26) have the same optimal solution.

Proof: Let € < g 2 min;(P//2), where P! is defined

z

in (17). If there exists an x € X, but x ¢ Xg, at least one



entry in Cx, say the ith entry, is not positive. By (16) and (20),
Ai(x) > P//2 > ¢, ie., a contradiction to x € X,. Hence
X. C Xe. |

Remark: Note from (17), ¢g as defined above concerns
the rate ratio between users. In practice, the required BEP
is of the order at least 10~%. Since we are discussing the
system of a small number of users, it is reasonable to assume
€ < ¢p. Hence in the subsequent discussion, (21) and (26) are
equivalent.

For the convex optimization problem with strictly convex
objective function, it is known that the optimal solution is
unique [6]. Hence, if the optimal solution for (26) is attained,
it is unique.

B. Properties of the Optimal Solution

In this section, we want to prove that the optimal solution
for (26) is attained and satisfies the inequality constraint with
equality, i.e., A;(x) = e for i = 1,...,n. First, we propose
the Iterative Descent Algorithm:

Input: x(© € X,.

1) Set k1,

2) = 1k|mod n-
I A% <,
let xk+1) = [zgk), . ,xl(-li)l, mng), l(-ﬁ)l, . ,z%k)] s.t.
)\Z(-kﬂ) =€

otherwise x**1) = x(*)
3) ke k4l

Lemma 3. For each user i, the Iterative Descent Algorithm
generates a sequence {mgk)}k When ¢ < ¢, the sequence
{xgk)}k is monotonically decreasing and is bounded below by
zero, thus it is convergent. Suppose {:cgk)}k converges to I,
and let X =(Z;:1=1,--- ,n). Then \i(X) = € for all i.

Proof: See Appendix B. |
Remark: In our simulations, the Iterative Descent Algo-
rithm converges fast. For a three-user system and a target BEP
€ = 1073, it converges in fewer than 30 steps to an accuracy
of six significant figures.

Theorem 2. When ¢ < €, the optimal solution xX* of the
power control problem stated in (26) satisfies the inequality
constraint with equality, i.e, \(x*) =€ fori=1,...,n.

Proof: For any feasible solution x with A;(x) < e
for some %, applying the Iterative Descent Algorithm with
x(® = x, by Lemma 3, we obtain a monotonically decreasing
sequence {ng)}k which convergences to z; for all ¢ and
Ai(X) = € for all i. Hence, 3,77 < 3, zZ. Therefore, the
optimal solution must satisfy the inequality constraint with
equality. n

Define

Fe = {x: Ai(x) = ¢, for all i}. @27

The optimization problem (26) is equivalent to min}_, x?
for x € F.. Since A is continuous, F, is closed. Further, as
F. is bounded, it is compact. By Weierstrass Theorem, the
optimal solution is attained.

C. Optimality of the Iterative Descent Algorithm

In this section, we want to show that when ¢ < ¢g, the
function A is injective on X.. Hence there is one element in
F. and thus the Iterative Descent Algorithm converges to the
globally optimal solution.

Lemma 4. Consider an n-user wireless communication sys-
tem with channel gain matrix G = (g,;) being row diagonally
dominant. Let I be a nonempty subset of {1,2,...,n}. For
two power vectors x° and %X with 0 < %; for i € I and

20 =3, for i ¢ I, there exists | € T s.t. \(X) < A\(x0).
Proof: See Appendix C. |

Lemma 5. For an n-user wireless communication system, if
the channel gain matrix G is row diagonally dominant, the
BEP function X is injective on X, for € < €.

Proof: See Appendix D. [ |
In fact, using Lemma 5 and the fourth equivalent definition
of M-matrix, we can prove the following theorem.

Theorem 3. For an n-user wireless communication system,
if the character matrix is an M-matrix, the BEP function \
is injective on X, (e < eg). Hence A\;(x) = € for all i has a
unique solution.

Proof: See Appendix E. |
Remark: First, for the simplicity of analysis, the target BEP
€ in (21) is set to be the same for all users. However, the case
can be generalized to each user with different ¢;, and all the
conclusions in this section hold with a slight modification.
Second, if the objective function in (21) is changed to any
function f(x) such that f(x) > f(x') when x > x/, the
conclusions in this section also hold. This property of the
objective function is applied in the proof of Theorem 2.

IV. SIMULATION RESULTS

In this section, we compare the power control results under
the Gaussian model and the non-Gaussian model. The channel
gain g;; is set to one for all 7 and g,; is drawn from a uniform
distribution on the interval [0, 1] for all j # i. Moreover, they
satisfy that the character matrix C' is an M-matrix. The power
spectral density Ny of the AWGN is 10~!% W/Hz. The basic
transmission bit rate R = 1Mb/s.

Briefly recall that in the Gaussian model, using BPSK
modulation scheme, the BEP of user 7 is [7]

Ai = Q(V2v). (28)
Therein, +y; is the SINR of user 7 defined as

S S v R
2 i 935%; + i
where 7); is the power of received thermal noise at rec;.
In order to allow an equal-footing comparison, set 7; =
NgR; for all 4. It is obtained from
2 2
95 %5

T;94;
2 = — .
@ 7% @ (\/ NOTi/2>

(30)



That is, without mutual user interference, the BEP’s calcu-
lated under the Gaussian model are the same as those under
the non-Gaussian model. From another point of view, such
setting of 7, takes into account the bandwidth of the filter at
rec; which is related to the transmission rate R;. It should be
mentioned that most simulations in existing research of power
control problem using the Gaussian model assume that 7, is
a constant for all rec;, which in fact is not always the case.

First, we consider a system involving three active users
and each transmitter transmits at the same bit rate R. Fig. 2
shows the power as a function of target BEP € for each
user. The powers under the non-Gaussian model are found
by the Iterative Descent Algorithm. The solutions under the
Gaussian model are solved by (I —vH) !yn [8], where I is
the 3-by-3 identity matrix, H = (gfj) with diagonal element
being zero, n = [, n2,m3] " is the thermal noise vector and
v = diag(y1,7vs,y3) with -y; being the SINR corresponding
to target € by (28). It is seen that the powers obtained in the
Gaussian model deviate from those in the non-Gaussian model.
Roughly, the smaller the target €, the lager the differences.
In Fig. 3 the deviation is further evaluated in terms of the
normalized square error (NSE), which is defined as

NSE(e) = |Ix® — =||/||%*]]. 3D

where %2 is power under the non-Gaussian model, and x2 is
the power under the Gaussian model. These two figures show
that the Gaussian model gives inaccurate results.

Next, we investigate a two-user system where the transmit-
ters use different bit rates. For the convenience of illustration,
let g11 = gop and g1 = go1. The target BEP is 1074, In
Fig. 4, we fix the bit rate of tran; to be R, while change
the bit rate of trany from R to R/10. It is observed that
both transmitters decrease power as trany decreases the bit
rate. The decreasing power of trany is much more significant
than that of tran;. It should be pointed out again that if 7;
is constant as aforementioned, the powers of two transmitters
will be constant in the Gaussian model. But now, 7 is set to be
NoR;, so the Gaussian model has similar results with the non-
Gaussian model. However, the Gaussian model still fails to
reflect the effect of bandwidth on the mutual user interference
with different data rates. Fig. 5 plots the NSE curve. It can be
seen that the gap between the Gaussian model and the non-
Gaussian model increases with the bit rate ratio (R;/Rg).

In Fig. 6, the bit rate of tran, is still fixed to R, but the bit
rate of trany changes from R to 10R. We see that the powers
increase with the rate ratio (R2/R1) for both transmitters and
trany has a lager variation. Combined with Fig. 4, it can be
seen that the difference between the Gaussian model and the
non-Gaussian model is more significant for the user with lower
transmission bit rate, say user 2 in Fig. 4 and user 1 in Fig. 6.

V. CONCLUDING REMARKS

In this paper, we investigate the power control problem
based on a non-Gaussian interference model. As demonstrated
in the simulations, the results under the non-Gaussian model
are significantly different from those under the traditional

7,
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Fig. 1. Typical cases of interfering signal with different bit duration 7 in the
integration interval T. 74 is the relative time offset and b; is the information
bit.

- m - non-Gaussian model |
—e— Gaussian model

Power Level (W)

target BEP

Fig. 2. Power as a function of ¢ for each of the three users. The dash lines
show non-Gaussian model and the solid lines show Gaussian model.

Gaussian model. We note that the analysis in this study,
although specific to certain assumptions, can be extended to
more general situations. For example the channels are time-
varying. However, the results reported in the paper aim to
shed further lights on more general system models and the
corresponding power control problems based on those models.

APPENDIX A
PROOF OF LEMMA 1

Fix a user i. By the property of @-function, A; is strictly

and monotonically decreasing with z;.
T;
Let qi; = gij Jo a;(t — 7;)dt and 0 = +/NoT;/2.

From (8),

M\ = Ea, {Q (ELM
J#i o
Fog., {Q (Z#’“ Qi ¥ @ik )} 3

g

(32

=E q;
J#EIFER

Follows from the observation that g;; has symmetrical
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Fig. 3. NSE as a function of ¢ for non-Gaussian model and Gaussian model.
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distribution and define ¢}, £ |gix|. We have

MN=Ea E, |*0 2k i3T5+ ig T
CT itk |2 o
1 ’ A Ti — QLT
+§Q (Zg;ékqw 5 — Gk k)} (34)
g
M1
= Ejg;g#qu;k §f(xk§q1j)} . (35)

Since for any g;;, %’“:1”) is well-defined, the differenti-

ation can move into the expectation. Then

—Eq, B, |22@a) qJ)} (36)
Oz, JFLi#k R 2 Oy,
1
=E ij E, — g
gk Lax/ﬁq““
(07 ek 25T + igr)’
—exp | —
202
gt — qz)?
+exp *(Zﬁékqw J 16 Tk) 37)
202
> 0. (38)

The last inequality holds since for any x € X, any ¢;; and
qgk’

Z @i %5 + QgTh > Z %ijTj — ATk (39
J#k J#k
> Tiguzx; ~T; Z 9i5 T (40)
J#i
> 0. (41

Therefore, A; is strictly and monotonically increasing with
xx for k # 1.

APPENDIX B
PROOF OF LEMMA 3

The input is x® € X,. When ¢ < ¢, x@ € Xo (ref.
Prop. 1).



If )\i(x(o)) = ¢ for all 7, then we are done. Otherwise
X (x©®) < ¢ for some i. Suppose at the kth step, x(*) is
feasible (ie., x® e X, C Xo) and a:() is updated. In
order for )\(kﬂ) € > )\(k) by Lemma 1, m(kH) <z (k)

Consequently, )\(Hl) < )\%k) < ¢ for j # i, which 1mp11es
x B+ g fea51ble and x(k+1) < x(k) Further x(kJr ) > 0 since
otherwise if m(kH) 0 =0< Z ;9 (kH),
ie, xH) ¢ X5, a contradlctlon to that x(’”i is fea31ble
Therefore, the sequence {m }k is monotonically decreasing
and is bounded below by zero.

Let X = limg 00 x*). For any arbitrarily small § > 0,
since A(x) are continuous functions, there exists a sufficiently
large K, when k£ > K we have

M(E) = NExY<s vi=1,...,n (42)
By the algorithm, )\i(x(kl)) = ¢ for some k' > K. Therefore,
from (42), we have

|Ai(X) — €| <6 Vi=1,...,n. (43)
That is, A;(X) = € for all i.
APPENDIX C
PROOF OF LEMMA 4
The Jacobian matrix Jy of A is
A 8 M
oz Ox2 3Ty,
OAy  0Ap ELYY
= @
oz, Oz Oy,
By Taylor’s Theorem
Mx) = Ax%) + L (xO)(x—x%) +o(]x = x°)).  @5)

Let Ax = x — x° It is easy to see Az; > 0 for all i,
Suppose [ = argmax;{Ax;}. Obviously, [ € I. Let t = 1/m
where m is a positive integer.

Define x* = x*1 +tAx for k=1,...
From (45), we have

,m, then X = x™,

A(xY) = A+ I\ (xP)tAX + o(t]|Ax]]) (46)
A(x?) = A+ I\ (xEAX + o(t]|Ax]]) C))
MX™) =A™ DHLE™ HtAX +o(t]|Ax]]).  (48)
Summing above, we have
m—1
AX™) = M)+t ) LA+ Yot Ax]]). (49)
k=0
We know
oA ~qQik (25 @iyzs)?
Bz~ [ o O <*—za2 G0

T
where gy = Tigy and qi; = gi5 [, ' a;(t — m;)dt > —gi5T5.

For any k = 0,--- ,m— 1, the Ith component of J,(x*)Ax
is
(J)\( F)Ax), (51)
8)\1
_ . 52
Z axj z; (52)

< (5 quﬂvl?)2
=F i —_— — 1A\ _ J 7
| o 271'(].2:: @y A%;) exp < 202
(33)
For any g;;, we have,
Z Q; Az = quidz + Z qi; Az, (54)
Jj=1 J#l
> guTiAz; + Z —gi; 11 Az (35)
L
> guTidzy + Y —gTidz,  (56)
L
=TAz | gu+ Y —ay (57)
J#l
> 0. (58)

The last inequality holds since the channel gain matrix G =
(g45) is row dlagonally dominant, i.e., gy > Z]#l 9i5-

Therefore, (Jy(x*)Ax); <0 for k =0,- —1.

Further, since lim,_q % =0 and (J*(x )Ax)“ >0,
there exists a sufficiently large M, when m > }\/.I we have

lo(t]|Ax[),| < ¢ |(JA(x*)Ax)| = —t(Ia(x")Ax),  (59)
that is, for k=0,--- ,m—1
o(t]|Ax]]), + t(Jx(x*)Ax); < 0. (60)
Hence,
m—1
N(E™) = M) =t xF)Ax) + 3 ot} Ax),
k:o 61)
< 0. (62)
That is
(%) = A (x™) < M(x0). (63)
APPENDIX D

PROOF OF LEMMA 5

For any x and x’ € &, x # x/, define I = {i : z; < z}}.
We assume I # (). (When I = ), we can exchange the value
of xand x".)Let X be &; =z} fori € [and &; = x; fori ¢ I.
By Lemma 4, there exists [ € I s.t. A(X) < A(x) < e. Since
(%) < e < €, we have Tigyud; — lej# gi;Z; > 0, for
otherwise, by (20), A;(X) > e, which contradicts. Following
the same proof of Lemma 1, since T;g;;%;—1; zj# gi;%5 > 0,
(41) holds, and thus ); is monotonically increasing with z; for
i # 1. Further, as £; > x for i ¢ I, \;(x’) < A;(X) and hence
A(x) < A(x). In conclusion, A(x) = A(x’) if and only if
x = x/, that is, the function A is injective on X.



APPENDIX E
PROOF OF THEOREM 3

Consider an n-user wireless communication system with
channel gain matrix G = (g;;) and its character matrix
C is an M-matrix. If G is row diagonally dominant, By
Lemma 5, we are done. Otherwise by the fourth equivalent
definition of M -matrix, there exists a positive diagonal matrix

D = diag(dy, - ,dy), such that C'D is strictly row diagonally
dominant. In detail:
i g11 —gi2 ~gin dy
—g21 g22 —92n dy
CD = . .
_"gnl —Gn2 Gnn dn
(64)
r dign —dag12 ~dngin
—di1g21  doga2 ~dngan
= - . . , (65)
_4dlgn1 Ad2.gn2 dngnn
and
|digis] > > | — gizd;| for all i. (66)
J#i
Hence,
digis > Z giyd;  for all i. (67)

J#i

Define a matrix A = (a;;) by letting a;; = gi;d; for all ¢
and all j. Then A is row diagonally dominant. By Lemma 3,
under channel gain matrix A4, the BEP function A4 is injective
on Xg, ={x:24,(x)<e,i=1,--- ,n}h

Observe that under channel gain matrix G, the BEP function
Ag has the relation: Ag(Dx) = Aa(x) for any x. Define
Xg = {Dx:x € X4 }. Since A4 is injective on X4, Ag is
injective on Xg.

Moreover,

Xo, ={x:x¢;(x)<ei=1,---,n} (68)
={x: 2D %) <ei=1,---,n} (69)
={x:D'xe X4} (70)
={Dx:x€Xyu} (71
= Xg (72)

Therefore Ag is injective on X, and the solution for
Ag; (x) = ¢ for all ¢ is unique.
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