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Talk Outline 

Ø What is an NOI? 
Ø Examples for motivation 

Ø Fundamental issues 
v Choice-based objectives 
v Control-communication interplay 
v Control under resource contention 

Ø Concluding remarks 
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Examples for motivation"
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1. The power control problem 

The power vector                      is non-negative 
             , the normalized gain matrix is positive 4 

Signal-to-noise ratio for user i 

Γi =
Pi
ZijPj +ηij≠i∑
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The QoS tracking model 

Ø Given signal-to-noise QoS objectives, γi, find 
distributed algorithms to achieve 

Ø Foschini-Miljanic Algorithm: 
 

Ø It is known that the power vector, P(k), converges 
to a feasible solution if a feasible solution exists. 

Ø Setting of information-based control 
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Distributed algorithms 
Ø Tri-State Algorithm (Sung-Wong): 

Ø  Theorem: If a feasible solution exists, the tri-
state algorithm converges to a solution,      
with the property: 

Ø  A simple version of information-limited control 
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Some salient observations 
Ø Users can join and leave the network 
Ø Observer and controller are not co-located 
Ø Setting of information-based control 

v Communication bandwidth limited 
Ø The objective of user i is represented by γi , 

known only to user i 
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Key features of an NOI 

Complex 
 network 

Quantized control 

Partially known 
interactive 
objectives 



Network of Open Interaction 
Ø State evolution 
 
 
Ø Observation and (quantized) control 

Ø Output 
 
Ø What are the objectives? 
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More about the objectives 
Ø Single objective versus multiple objectives 
Ø Competitive versus cooperative 
Ø Time-constant or time-varying 
Ø Honest agents versus non-honest agents 
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A Network of Open Interaction is a 
multiple objective, cooperative, time-
varying, honest distributed system. 



Issue with the objectives 

Ø The objectives are only partially known and 
could be dynamically evolving. 

Ø In addition to uncertainties due to state 
disturbances and observation noises, there are 
uncertainties due to multiple objectives. 

Ø Assume agents select their choices with a known 
distribution and the choices remain unchanged. 

Choice-based action system 
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2. Choice-based rendezvous 
Ø Standard rendezvous problem: define path 

planning strategies for a mother and child 
separated in a park can meet again. 

Ø With multiple choices: Alice and Bob jog in the 
same park at the same time every day, is there a 
path planning strategy to ensure the following? 

Good 
mood 

Bad 
mood 

Good 
mood Meet Won’t 

meet 
Bad 
mood 

Won’t 
meet Meet 

Alice 
Bob 

or 
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2. Choice-based rendezvous cont. 
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But how about the following target matrix: 



3. Interactive objectives - Salsa

Video courtesy of Baillieul and Oczimder  
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Regions requiring attention  

4. Sensor placing problem 
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Model for sensor positioning 
Ø Assuming a linear dynamic system 

Ø Observation and (quantized control) 

Ø Agent i has a number of locations to monitor 

Ø Aim to position the sensor according to the 
agents’ choices without a central coordinator 
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dx(t)
dt

= Ax(t)+ biui (t),   x(0) = x0 ∈ R
4    

i=1

L
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yi (t) = x(t), ui (t) = qi (yi )
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Two definitions of target position 
1.  Sensor located at the arithmetic means of the 

points of interest 

2.  Sensor located at the center of the minimum 
covering circle 

 
Ø In both cases, the target positions can be 

represented by a                     tensor. 
Ø In a two-agent case, by an           matrix, H.  17 
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The basic question 
Ø Can the sensor be controlled jointed by the 

agents without a central coordinator? 
Ø If yes, does it require some form of signaling 

among the agents? 
Ø How much more control cost is needed? 
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Two extreme approaches 

Ø No communication versus full-communication 
Ø Is it possible to achieve multiple objectives 

with no communication between agents? 
Ø  Choice-based target realization problem 

(CBTRP): Consider the system Λ.  Given a 
target matrix, H, a set of choices and  a 
termination time,  ,  are there control sets,                                            

       so that  
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Basic result 1 
Ø Theorem [WB] [GLW]: Assuming the linear 

system Λ is jointly controllable, then a target 
matrix is realizable if and only if for any                                              

         and any 

Ø For two-agent cases, it means 

Ø Matrices satisfying the condition are called 
compatible. 
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Basic result 2 
Ø Theorem [GLW]: Consider the quadratic 

control cost    
                                              
    If the system Λ is individually controllable 

and H is compatible, the optimal control sets 
are defined by: 

 
 
    for some       and      that can be explicitly 

defined.  
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Basic result 3 
Ø Control cost is lower bounded by the averaged 

control cost of corresponding single target 
control problems. 

Ø Consider a two-agent scalar example 
Ø A=0, bi=1, a general 2-by-2 compatible H 
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J min =
1
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2 +
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2
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2 ]

Javg =
1
8τ
[(H11 − x0 )

2 + (H22 − x0 )
2 + (H12 − x0 )

2 + (H21 − x0 )
2 ]

Jmin − Javg =
1
8τ
[(H11 − x0 )

2 + (H22 − x0 )
2 − 2(H12 − x0 )(H21 − x0 )]≥ 0

2Javg ≥ Jmin    (equality holds iff H12 = H21 since  H11 +H22 = H12 +H21)



Sensor located at the 
arithmetic mean 

Ø The target matrix, H, with entries defined by 
 
 

is compatible and optimal control laws can be 
derived. 
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24 Optimal trajectory of sensor for a three-agent case 
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Sensor located at the 
center of minimal covering circle 
Ø The target matrix is not compatible. 
Ø Signaling is necessary. 
Ø Two-phase solution: 

v First phase – target signaling 
v Second phase – target control 

Ø Control cost J is a sum of the two phase costs 

Ø Cost of the first phase is dependent on the 
number of possible choices and the detection 
error margin. 25 

J = JPhase1 + JPhase 2



A modified 2-stage system (LW) 
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Ø Consider  
    w(t) is Gaussian with variance 
Ø Alice observes:  
Ø Bob observes: 
                   are Gaussian with variance 
Ø  Target matrix: 
 
Ø No terminal constraint but define control cost: 

1 ,0 ,0)0(  ),()()()()1( ==+++=+ txtwtvtutxtx
δ 2

)()()( ttxty AA η+=

)()()( ttxty BB η+=

ηB (t),ηB (t) ε 2

H = R R
R −R

"

#
$

%

&
'

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−= ∑∑∑

j
j

i
i

ji
ijji vuHvuxJ 22

,

2)),,2((
4
1



Comparing optimal control costs 

Ø Linear controller for a single target, (R or –R), 

Ø Linear controller, multiple choices, optimal J 

Ø Nonlinear controller using first stage to signal 
can achieve for large R and small noises 
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Optimal linear control (LC) versus nonlinear control NLC 

ε = δ = 5



Witsenhausen type 
counterexample 

Ø This reminds us of the famous Witsenhausen 
counterexample 

Ø Job coordination between a “weak” controller 
and a “blurry” controller implies linear 
feedback law suboptimal. 

Ø Job coordination between “objective 
signaling” and “objective control” also implies 
linear feedback law suboptimal. 
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Optimal control 
Ø Two-phase scheme is suboptimal in general 
Ø Optimal strategies will combine signaling and 

control 
Ø How much signaling? 
Ø Possible to define control communication 

complexity by extending the Andrew Yao’s 
communication complexity 

Ø A protocol consists of a number of 
observation and action rounds.  Classify 
protocol by the number rounds used.  Zero-
round is essentially open loop. 30 



Results for"
nonlinear dynamical 
systems"

31 



A nonlinear system example 
Ø Brockett-Heisenberg Integrator (BHI) 

Ø Interested only in output in the z-axis 
Ø Consider only loop control functions on [0,1] that 

produce close curves in the (x, y) plane 
Ø Well known that 
   s – the area enclosed by the curve                . ( ( ), ( ))x t y t 32 
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Bilinear I/O systems  
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Ø BHI is a special case of a system with bilinear 
input-output map, that is             is a bilinear 
functional in u and v. 

Ø Given an orthonormal basis                F can be 
represented as an infinite matrix; u and v, as 
infinite dimensional vectors. 

Ø The rank of F as a matrix is independent of 
the choice of  the basis. 
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Ø If the control functions are expressed in the basis 

Ø Then, 

 
Ø Question: find control sets                     to achieve 

a given m-by-n target matrix, H, while minimizing 
 
 

Brockett Heisenberg Integrator 

{ui}i=1
m ,{v j} j=1

n
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Matrix formulation  
Ø The problem can be represented as 

 
     
     subject to  
 
Ø System is feasible if and only if 

So BHI can achieve any finite target matrix 
35 
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Minimum control cost for BHI 
Ø Theorem [WB]: Minimum control cost is: 

 
Ø Consider an orthogonal n-by-n H 
Ø Control cost averaged over each entry: 

Ø For zero-round protocol, the minimal control cost: 

Ø Superlinear growth rate!  
Information can greatly reduce control cost! 
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Control under resource 
contention"
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Resource sharing 

Ø Since NOI allows open access, resource 
contention is unavoidable. 

Ø Wireless communication channels are 
common contention hotspots. 

Ø Traditional contention resolution approaches 
aim to optimize system throughput. 

Ø For distributed control systems, delay is of 
primary concern. 
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Scheduling problem in NOI 
Ø Scheduling in NCS has been extensively 

studied. 
Ø For NOI, random access likely scenario. 
Ø Lossy NOIs, controlling with missing 

observation or control instructions 
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TCP-like vs UDP-like 
Ø Previous works model an individual linear system 

is by: 

Ø       represents whether the control information 
has been properly received by the plant or not.    

Ø If feedback control is based on prior history of the        
 ‘s it is transmission control protocol (TCP)-

like.  Otherwise, it is datagram (UDP)-like. 
40 
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Facts from the literature 

Ø Traditional media access control (MAC) 
protocols, such as, slotted ALOHA or CSMA 
etc leads to probabilistic     . 

Ø Difficult to ensure TCP-like information 
structure (acknowledgment required) 

Ø Separation of control and estimation works 
under TCP-like protocol but not for UDP-like 
protocol. 

Ø UDP-like has smaller stable parameter region 
than TCP-like. 41 
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A different MAC paradigm: 
Protocol sequence based 
access control"

42 



Three controllers, one channel 
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Project team: H. Cheng, Y. S. Chen. W. S. Wong, Q. Yang, L. F. Shen, and J. Baillieul  



Sequences of all shifts 
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Good!	


Good!	


Beau)ful!	


Transmitter 1 

Ugly!	


Transmitter 2 

Receiver 

Transmitter 1 

Transmitter 2 

Receiver 

Receiver 

Receiver 

Transmitter 1 

Transmitter 1 

Transmitter 2 

Transmitter 2 

Protocol sequences (PS) are periodic binary sequences with good 
Hamming cross-correlation properties under different shifts to 
provide a minimum goodput to each active user. 



User-Irrepressible PS 
Ø Assigns unique sequence to each user. 
Ø If all active users transmitting according to the 

assigned sequences are guaranteed at least 1 
collision-free packet in a period, the system is 
user-irrepressible  (UI) 

Ø E.g. one can construct UI sequences via the 
Chinese Remainder Theorem 

1 1 1 0
0 0 0 0
0 0 0 0

!

"

#
#
#

$

%

&
&
&

1 0 0 0
0 1 0 0
0 0 1 0

!

"

#
#
#

$

%

&
&
&

1 0 0 0
0 0 1 0
0 1 0 0

!

"

#
#
#

$

%

&
&
&

⇔

[1,0,0,0,0,0,1,0,0,1,0,0]
[1,1,1,0,0,0,0,0,0,0,0,0]
[1,0,0,0,0,1,0,0,0,0,1,0]



Protocol sequence based 
distributed control  
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Sensor event driven architecture  

Ø Events driven by sensors and may conflict 
Ø Use guard times to ensure contention-free 

control messages 
Ø Delay assumed to be less than sampling time 
Ø Multiple control messages on each sample data 
Ø Hold-input control laws adopted  47 
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Protocol sequence (PS) control 
Ø Under PS control, probabilistic loss is replaced 

by bounded deterministic delay 

Ø Techniques for delayed systems apply 
Ø Separation principle can be upheld. 
Ø Optimal state estimator and simple suboptimal 

control can be derived using well-known 
results for quadratic cost function [CW]  
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Numerical results 
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x[k +1]=
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u[k]+w[k],

y[k]= x[k]+ v[k],                                                        

Basic system 45 slots in one  
sampling interval  

Cost as a function of time delays, 
where delay =α ∗ sampling time , 0 ≤α ≤1  
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Suboptimal controller with protocol sequence
Neglecting time delay with ps=1
Neglecting time delay with ps=0.95
Neglecting time delay with ps=0.9
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Suboptimal controller with protocol sequence
Suboptimal controller with ps=0.95
Suboptimal controller with ps=0.9



Concluding images"
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Learn to learn other players’ objectives! 
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Home

How to help Dorothy get home 
in the shortest time? 

Information is 
part of the optimization 
objective! 
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Google’s Project Loon 
Loon for All: 

 

Image from http://www.google.com/loon/ 

Innovative applications in control and information! 



THANK YOU 
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For details: 
http://www.ie.cuhk.edu.hk/wswong 


